Abstractive Summarization】的更多相关文章

Sequence-to-sequence Framework A Neural Attention Model for Abstractive Sentence Summarization Alexander M. Rush et al., Facebook AI Research/Harvard EMNLP2015 sentence level seq2seq模型在2014年提出,这篇论文是将seq2seq模型应用在abstractive summarization任务上比较早期的论文.同组的…
调研目的: 了解生成式文本摘要的常用技术和当前的发展趋势,明确当前项目有什么样的摘要需求,判断现有技术能否用于满足当前的需求,进一步明确毕业设计方向及其可行性 调研方向: 项目中需要用到摘要的地方以及区别 数据集(研究用评测集/项目用大规模数据集) 现有技术 分类 有监督 无监督 半监督等(如果有) 效果 优势和缺点 评价现有技术用于当前项目的可行性 扩展:寻找现有技术的研究改进方向 项目中用到摘要的地方 传统新闻摘要任务 单/多文档新闻摘要生成 非传统摘要任务 标题生成 特点 篇幅一般较短 不…
 文章已同步更新在https://ldzhangyx.github.io/,欢迎访问评论.   五个月没写博客了,不熟悉我的人大概以为我挂了…… 总之呢这段时间还是成长了很多,在加拿大实习的两个多月来,我在编码能力和眼界上都有了极大长进.当然,我也点上了烹饪技能点. 废话不多说,我们来看一篇论文,就是标题所说的使用模态注意力和图像过滤机制的多模态句子摘要. ==================== 个人见解 宗成庆老师的这篇文章发表于ACL'18,同时获得了国家自然科学基金的支持.文章着眼于利用…
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见http://www.cnblogs.com/robert-dlut/p/5952032.html).随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all yo…
awesome-text-summarization 2018-07-19 10:45:13 A curated list of resources dedicated to text summarization Contents Corpus Opinosis dataset contains 51 articles. Each article is about a product’s feature, like iPod’s Battery Life, etc. and is a colle…
Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in Deep Learning   The Encoder-Decoder architecture is popular because it has demonstrated state-of-the-art results across a range of domains. A limitati…
Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. Table of Contents Tutorials Model Zoo Recurrent Networks Convolutional Networks ETC Libraries Model related GPU related IDE related ETC Links Tutorials…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…
记录下,有空研究. http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml http://nlp.stanford.edu/courses/NAACL2013/ Fast and Robust Neural Network Joint Models for Statistical Machine Translation ACL2014的论文列表 http://blog.sina.com.cn/s…
回望2017,基于深度学习的NLP研究大盘点 雷锋网 百家号01-0110:31 雷锋网 AI 科技评论按:本文是一篇发布于 tryolabs 的文章,作者 Javier Couto 针对 2017 年基于深度学习的自然语言处理研究进行了大盘点.雷锋网 AI 科技评论根据原文进行了编译. 在过去的几年里,深度学习(DL)架构和算法在诸如图像识别和语音处理等领域取得了世人瞩目的进步.然而在最开始的时候,深度学习在自然语言处理(Natural Language Processing, NLP)领域的…