卷积神经网络CNNs的理解与体会】的更多相关文章

https://blog.csdn.net/shijing_0214/article/details/53143393 孔子说过,温故而知新,时隔俩月再重看CNNs,当时不太了解的地方,又有了新的理解与体会,特此记录下来.文章图片及部分素材均来自网络,侵权请告知. 卷积神经网络(Convolutinal Neural Networks)是非常强大的一种深度神经网络,它在图片的识别分类.NLP句子分类等方面已经获得了巨大的成功,也被广泛使用于工业界,例如谷歌将它用于图片搜索.亚马逊将它用于商品推荐…
深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的.这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,…
英文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 中文译文:http://mp.weixin.qq.com/s/X81gDdlXnte-H0lLEvsJGg 编译: Python开发者 -  MentosZ  英文:ujjwalkarn.me http://blog.jobbole.com/113819/ 什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Convolutional Neural Networks for Human Action Recognition.比较感兴趣是CNN是怎么应用于行为理解的,所以就看看.这篇论文发表在TPAMI2013.它基本上没有公式的,论文倾于从论述角度描述它的基本方法和实现效果.另外,对于怎么去训练也没有具体的…
此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时间,如果您有收获,请点赞关注 :) 一.理解NLP中的卷积神经网络(CNN) 现在当我们听到神经网络(CNN)的时候,一般都会想到它在计算机视觉上的应用,尤其是CNN使图像分类取得了巨大突破,而且从Facebook的图像自动标注到自动驾驶汽车系统,CNN已经成为了核心. 最近,将CNN应用于NLP也…
1. 卷积神经网络结构 卷积神经网络是一个多层的神经网络,每层都是一个变换(映射),常用卷积convention变换和pooling池化变换,每种变换都是对输入数据的一种处理,是输入特征的另一种特征表达:每层由多个二维平面组成,每个平面为各层处理后的特征图(feature map). 常见结构: 输入层为训练数据,即原始数据,网络中的每一个特征提取层(C-层)都紧跟着一个二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力.具体C层和S层的个数不确定…
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非学者所著,看着也更舒服一点. 另,本文涉及了反向传播的backpropagation算法,知乎上有个回答很不错,备份到文章里了,为支持原作者,这里给出知乎原文连接 可视化理解卷积神经网络 这张PPT是本节课的核心,下面我来说说这张图. 可视化神经网络的思想就是构建一个逆向的卷积神经网络,但是不包括训…
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情.当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”. 本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自…
自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用. 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识…