洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. \[f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\] 显然\(j\)这一维可以滚掉,于是变成\(g_i=\min\limits_{k=1}^{i}\{f_k+w_{k,i}\}\)做\(m\)遍(题目中的\(k\)) 这又是一个决策单调性优化…
题目描述:给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每一个元素. 输出格式:输出一个数,费用和的最小值. 2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n. 决策单调性到底是个什么神仙…… 这题用分治做决策单调性…… 问题是我连题解都看不懂…… 米娜桑自己看题解吧,如果有会了的麻烦教我一下………
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(dp_{j,k}+calc(j+1,i))\) 然后看看怎么优化 证明一下这个DP的决策单调性: trz说可以冥想一下是对的就可以 所以我就不证了 (其实就是决策点向左移动一定不会更优) 然后就分治记录当前的处理区间和决策区间就可以啦 //Author: dream_maker #include<bi…
传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define LD long double #define calc(i,j) f[j]+qpow(abs(s[i]-s[j]-L)) using namespace std; inline int read(){…
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt{|i-j|}\)的增长是逐渐变慢的,所以若当前位置\(i\)受\(x\)影响,那么对于任意\(y<x\),\(i\)之后的位置都不可能再受\(y\)影响. 也就可见其具有单调性. 决策单调性 这里的决策单调性我用的是闪指导指导我的分治做法. 我们对于当前区间\([l,r]\),再记录一个决策区间\…
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度为原先叶子\(+1\)的点. 那么新加入的叶子的深度的期望是未加入之前的期望+1,假设\(f_i\)为\(i\)个点的期望. 那么\(f_i=(f_{i-1}*({i-1})-f_{i-1}+2*(f_{i-1}+1))/i=f_{i-1}+2/i\) 含义就是平均的深度乘上点的个数等于深度总和,减…
高精度加法的思路还是很简单容易理解的 A+B Problem(高精)[传送门] 洛谷算法标签: 附上代码(最近懒得一批) #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<string> #include<cmath> using namespace std; int main() { ],b1[]; ],a[],b[]…
题目: 洛谷 4769 博客页面左下角的嘴嘴瓜封神之战中的题目 分析: 一个排列交换次数为 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) 的充要条件是这个排列不存在长度为 \(3\) 的下降序列(即:最长下降子序列不超过 \(2\) ),证明 感性理解如下: 考虑如果交换次数大于 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) ,那么一定存在至少一个元素「绕路」了. 必要性 :「绕路」分为如下两种情况: 第一,某个元素的目标位置在它左侧,但它…
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 \[p_i\ge a_j-a_i+\sqrt{|i-j|}\] \[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i\] 绝对值看着很不爽,我们把它拆开 \[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j…
洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转移的时候也肯定是要一块一块地转移啦. 设\(tot_{l,r}\)为完全被包含在\(l-r\)时间内活动总数,直接\(O(n^3)\)暴力求就好了. 设\(pre_{i,j}\)为时间\(1-i\)内一边选\(j\)个时,另一边能选的最大值.枚举一块转移的话,我们的方程应该写成这样: \[pre_…
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目: 洛谷3638 分析: 卡了一天的神题--(OrzJumpmelon) 首先预处理出从点\(p\)向\(d\)方向出发最终能到达的点\(nxt[p][d]\).这个可以直接记忆化搜索解决.如果出现环说明不能向这个方向出发,设为\(-1\). struct point { int x, y; point(const int _x = 0, const int _y = 0) : x(_x), y(_y) {} }; inline bool check(const point &p) { re…
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_j-s_j+h_j^2\),横坐标不单调可以\(CDQ\)分治或\(Splay\).具体见这里. 然后差不多就是个模板了. 注意算斜率乘1.0啊mmp. //645ms 8.14MB #include <cstdio> #include <cctype> #include <cs…
题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内,那就把它用并查集并起来.最后对于一个询问,直接用并查集找就好了. 但是因为有撤销操作,所以在并查集合并的时候,我们将需要合并的两个点放进栈中,最后栈序撤销,所以只能考虑按秩合并而不能路径压缩. #include <map> #include <vector> #include <…
题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy线段树分治做法(不知道线段树分治?推荐一个伪模板题BZOJ4025二分图事实上这个链接是指向我的博客的).把每次操作(加边或查询)看做一个时刻,一条边存在的区间就是它加入后没有被查询的时间区间的并.于是用可撤销并查集维护一下连通块大小即可. 代码: #include <cstdio> #inclu…
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种是通过分成 多块后在每块上打标记以实现快速区间修改,区间查询的一种算法.根号 分治与其思路相似,将原本若一次性解决时间复杂度很高的问题分块去解 决来降低整体的时间复杂度. 例题 以本题举例子哈希冲突 本题作为论文的第一道题目,是一道很好的练习题,注意,本体给出的 \(value[i]\) 是 \(i…
洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到的两个子树的中点权之和不会变,因此我们考虑将这个东西与平方和挂钩.考虑构造 \(S=\sum\limits_{i=1}^nsiz_i(sum-siz_i)\),其中 \(siz_i\) 为 \(i\) 子树内所有点点权之和,\(sum\) 为所有点点权之和.那么不难发现 \(S\) 就是断掉所有点之后形成的两…
洛谷题面传送门 点分治 hot tea. 首先考虑什么样的点能够对以 \(u\) 为根的答案产生 \(1\) 的贡献.我们考虑以 \(u\) 为根对整棵树进行一遍 DFS.那么对于一个点 \(v\),我们记其 \(mn_v\) 为其子树内距离其最近的叶子,\(dep_v\) 为 \(u\) 到 \(v\) 的距离,那么如果 \(mn_v\ge dep_v\),那么对于任何一个 \(v\) 子树内的叶子 \(w\),如果 Bessie 选择从 \(w\) 逃出且我们在距离 \(v\) 最近的叶子处…
作者:zifeiy 标签:动态规划.最短路 题目链接:https://www.luogu.org/problem/P1280 题目大意: 有k个任务分布在第1至n这n个时间点,第i个任务的于第 \(P_i\) 分钟开始,持续时间为 \(T_i\) 分钟,则该任务将在第 \(P_i+T_i-1\) 分钟结束. 如果时刻i你是空闲的,而此时有至少一个任务是在时刻i开始的,那么你必须要在其中选择一个任务来做: 如果时刻i你是空闲的,而没有任何一个任务是在时刻i开始的,那么你在时刻i就可以是空闲的. 求…
题目链接:https://www.luogu.com.cn/problem/P1028 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数 \(n\) ): 先输入一个自然数 \(n(n \le 1000)\) ,然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个自然数,但该自然数不能超过原数的一半; 加上数后,继续按此规则进行处理,直到不能再加自然数为止. 输入格式 1个自然数 \(n(n \le 1000)\) 输出格式 1个整数,表示具有该性质数的个数. 问…
Description 你赢得了一场航空公司举办的比赛,奖品是一张加拿大机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直到你到达最东边的城市,再由东向西返回,直到你回到开始的城市.每个城市只能访问一次,除了旅行开始的城市之外,这个城市必定要被访问两次(在旅行的开始和结束).你不允许使用其他公司的航线或者用其他的交通工具. 给出这个航空公司开放的城市的列表,和两两城市之间的直达航线列表.找出能够访问尽可能多的城市的路线,这条路线必须满足上述条件,也就是从列表中的第一个城市开…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
题目描述: 给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每一个元素. 输出格式:输出一个数,费用和的最小值. 2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n. Solution 思路还是比较单纯 \[ f_{i,j}=f_{i-1,k}+g_{k+1,j} \] 有m次每次是\(O(n)\)的…
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后的感受: 首先列出裸的dp方程,\(f[i][j]\)表示前\(i\)个位置,切了\(j\)次,转移的时候枚举上一次且在了哪儿 \(f[i][j] = max(f[k][j - 1] + w(k, i))\) \(w(k, i)\)表示\([k, i]\)内相同的数的对数.. 然后sb的我以为拿个单调队列维护…
这里的先后关系可以看成节点和父亲的关系 在树里面,没有父亲肯定就没有节点 所以我们可以先修的看作父亲,后修的看作节点 所以这是一颗树 这题和上一道题比较相似 都是求树上最大点权和问题 但这道题是多叉树 这里有多个根,那就加一个编号为0的根,价值为0, 同时m要+1(因为这个虚拟的 根一定要取) 解法两种 (1)转二叉树 左儿子右兄弟可以转二叉树 这篇博客讲得很好 https://blog.csdn.net/c20190102/article/details/69946551 注意这里转后有"后遗…
题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using namespace std; typedef complex<double> cp; const int maxn=2e5+10; const double pi=acos(-1); int n,tot=1,bit,rev[maxn],ans[maxn]; cp a[maxn],b[maxn]; c…
嗯... 题目链接:https://www.luogu.org/problemnew/show/CF798C 这道题首先要会写gcd..也类似一种找规律吧... 问题的操作是在两个数的基础上进行的: 那么我们不妨只考虑两个数的操作,手写几组数据不难发现,所有写出来的两个数A.B,都会在至多两次操作内完成任务.那么我们可以考虑其性质: 两个数A.B.无非四种情况: 奇数,奇数--------------->操作后变成       偶数,偶数 奇数,偶数--------------->操作后变成…
分析 考虑上一层还是上两层还是爬上去 AC代码 #include <bits/stdc++.h> using namespace std; int f[1000005],a[1000005]; int main() { int n; scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=1;i<=n;i++) f[i]=min(f[i-1]+a…
2152: 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 3435  Solved: 1776[Submit][Status][Discuss] Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏.他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏…
传送门 调了两个小时,终于过了-- 凭啥人家代码80行我180行啊!!! 谁叫你大括号换行 谁叫你写缺省源 思路 显然,补给点所在的位置就是这棵树的带权重心. 考虑size已知时如何找重心:一开始设答案在\(x\),若存在\(x\)的一个子节点\(v\),使\(size_v>sum-size_v\),即\(2size_v>sum\),就往\(v\)走,重复该过程,直到走不动为止. 考虑用点分树优化这一过程:由于点分树层数不超过\(\log n\),这题又保证\(deg\leq 20\),可以暴…