[转自百度文库] 基于CRF工具的机器学习方法命名实体识别的过程 | 浏览:226 | 更新:2014-04-11 09:32 这里只讲基本过程,不涉及具体实现,我也是初学者,想给其他初学者一些帮助,如有不对,请多包涵 方法/步骤   语料的收集整理.部分专业有完整的语料库(包括训练语料和测试语料,这些语料不需要再进行人工标注).如果没有,个人就要根据专业需求上网上用工具抓取,下载,预处理(对中文语料需要进行分词处理和词性标注预处理),同时要对训练预料进行人工标注,很浪费时间.个人建议初学者直接…
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuningGitHub: https://github.com/macanv/BERT-BiLSTM-CRF-NER本文目录机构: 自己训练模型说明结果使用自己的数据2019.1.31更新,支持pip install package现在可以使用下面的命令下载软件包了: pip install bert-b…
准备工作,先准备 python 环境,下载 BERT 语言模型 Python 3.6 环境 需要安装kashgari Backend pypi version desc TensorFlow 2.x pip install 'kashgari>=2.0.0' coming soon TensorFlow 1.14+ pip install 'kashgari>=1.0.0,<2.0.0' current version Keras pip install 'kashgari<1.0…
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
原文地址:http://blog.csdn.net/eastmount/article/details/48566671 版权声明:本文为博主原创文章,转载请注明CSDN博客源地址!共同学习,一起进步~   目录(?)[-] 一 搜狗知立方介绍 搜狗知立方框架图 实体对齐和属性值决策 爬取InfoBox介绍 二 VSM相似度计算 基本概念 向量空间模型VSM TF-IDF 向量夹角cos相似度 实体相似度计算           前面讲述过两篇知识图谱相关的文章,这篇文章主要讲解基于向量空间模型…
  本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位.一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.时间.日期.货币和百分比)命名实体.   举个简单的例子,在句子"小明早上8点去学校上课."中,对其进行命名实…
QQ:231469242 欢迎nltk爱好者交流 http://blog.csdn.net/u010718606/article/details/50148261 NLTK中对于很多自然语言处理应用有着开箱即用的api,但是结果往往让人弄不清楚状况. 下面的例子使用NLTK进行命名实体的识别.第一例中,Apple成功被识别出来,而第二例并未被识别.究竟是什么原因导致这样的结果,接下来一探究竟. In [1]: import nltk In [2]: tokens = nltk.word_toke…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇.比如人名.地名.组织机构名.股票基金.医学术语等,称为命名实体.具有以下共性: 数量无穷.比如宇宙中的恒星命名.新生儿的命名不断出现新组合. 构词灵活.比如中国工商银行,既可以称为工商银行,也可以简称工行. 类别模糊.有一些地名本身就是机构名,比如"国家博物馆" 命名实体识别 识别出句子中命名实体的…
众所周知,通过Bilstm已经可以实现分词或命名实体标注了,同样地单独的CRF也可以很好的实现.既然LSTM都已经可以预测了,为啥要搞一个LSTM+CRF的hybrid model? 因为单独LSTM预测出来的标注可能会出现(I-Organization->I-Person,B-Organization ->I-Person)这样的问题序列. 但这种错误在CRF中是不存在的,因为CRF的特征函数的存在就是为了对输入序列观察.学习各种特征,这些特征就是在限定窗口size下的各种词之间的关系. 将…
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成    使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…