1. Introduction In this work, inspired by metric learning based on deep neural features and memory augment neural networks, authors propose matching networks that map a small labelled support set and an unlabelled example to its label. Then they defi…
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:https://github.com/floodsung/Meta-Learning-Papers 1 Legacy Papers [1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural…
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50 本文的贡献点在于: 1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息: 2. 提出一种 attention network 来产生 attention maps for creating the image representation of an exemplar image in novel class…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer Vision/iOS | 03/01/2017 If you are a newcomer to the Deep Learning area, the first question you may have is “Which paper should I start reading from?…
Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识. Matching Networks for One Shot Learning 论文将普通神经网络学习慢的问题归结为模型是由参数组成的,模型通过样本的训练转化为参数上的改进是一个特别"昂贵"的过程,因此需要大量样本.作者由此提到不涉及参数的模型(non-parametric model),例如kNN等模型(这里我将这两个的区别理解为…