Matching Networks for One Shot Learning】的更多相关文章

1. Introduction In this work, inspired by metric learning based on deep neural features and memory augment neural networks, authors propose matching networks that map a small labelled support set and an unlabelled example to its label. Then they defi…
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:https://github.com/floodsung/Meta-Learning-Papers 1 Legacy Papers [1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural…
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50  本文的贡献点在于: 1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息: 2. 提出一种 attention network 来产生 attention maps  for creating the image representation of an exemplar image in novel class…
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught learning)与无监督特征学习(unsupervised feature learning)就是这种算法.虽然同等条件下有标注数据蕴含的信息多于无标注数据,但是若能获取大量的无标注数据并且计算机能够加以利用,计算机往往可以取得比较良好的结果. 通过自学习与无监督特征学习,可以得到大量的无标注数…
I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习曲线(learning curve, lc) 来判断是否有必要继续训练下去.那什么是学习曲线呢?主要分为两类: 1.模型性能是训练时间或者迭代次数的函数:performance=f(time) 或 performance=f(epoch).这个也就是我们常用到的方法,即横轴记录训练时间(或迭代次数)…
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught learning)与无监督特征学习(unsupervised feature learning)就是这种算法.虽然同等条件下有标注数据蕴含的信息多于无标注数据,但是若能获取大量的无标注数据并且计算机能够加以利用,计算机往往可以取得比较良好的结果. 通过自学习与无监督特征学习,可以得到大量的无标注数…
https://zhuanlan.zhihu.com/p/41846072 https://zhuanlan.zhihu.com/p/38418698 https://zhuanlan.zhihu.com/p/41854739…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer Vision/iOS | 03/01/2017   If you are a newcomer to the Deep Learning area, the first question you may have is “Which paper should I start reading from?…
Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识. Matching Networks for One Shot Learning 论文将普通神经网络学习慢的问题归结为模型是由参数组成的,模型通过样本的训练转化为参数上的改进是一个特别"昂贵"的过程,因此需要大量样本.作者由此提到不涉及参数的模型(non-parametric model),例如kNN等模型(这里我将这两个的区别理解为…