今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://github.com/google/dopamine 在过去几年里,强化学习研究取得了多方面的显著进展.这些进展使得智能体能够以超越人类的水平玩游戏,其中比较可圈可点的例子包括:DeepMind 的 DQN 在 Atari 游戏上的表现.AlphaGo.AlphaGo Zero 以及 Open AI Fi…
谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不太稳定.更新不够及时等.今日,谷歌推出了一款全新的开源强化学习框架 Dopamine,该框架基于 TensorFlow,主打灵活性.稳定性.复现性,能够提供快速的基准测试. 配套开源的还包括一个专用于视频游戏训练结果的平台,以及四种不同的机器学习模型:DQN.C51.简化版的 Rainbow 智能体…
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战>.本篇论文主要以扑克进行实验,探讨深度强化学习与普通强化学习相比的优势.研究此类游戏不只是可以让程序打赢人类大师,还可以帮助开发算法,应用于更复杂的真实世界环境中,例如机场和网络安全.金融和能源贸易.交通管制和疏导,帮助人们在不完美的信息和高维度信息状态空间中进行决策.深度强化学习不需要依赖人类专家的原有…
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届国际机器学习会议(ICML 2018)在瑞典斯德哥尔摩成功举办.ICML 2018 所接收的论文的研究主题非常多样,涵盖深度学习模型/架构/理论.强化学习.优化方法.在线学习.生成模型.迁移学习与多任务学习.隐私与安全等,在本文中,腾讯 AI Lab 的研究者结合自身的研究重心和研究兴趣对部分 IC…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
原文地址: baijiahao.baidu.com/s?id=1600509777750939986&wfr=spider&for=pc 机器之心 18-05-15   14:26 --------------------------------------------------------------------------------------------- 上周,DeepMind在 Nature 发表论文,用 AI 复现大脑的导航功能. 今天,DeepMind 在 Nature…
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search). 本篇主要参考了UCL强化学习课程的第八讲,第九讲部分. 1. 基于模拟的搜索概述 什么是基于模拟的搜索呢?当然主要是两个点:一个是模拟,一个是搜索.模拟我们在上一篇也讨论过,就是基于强化学习模型进行采样,得到样…
在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化.而Asynchronous Advantage Actor-critic(以下简称A3C)就是其中比较好的优化算法.本文我们讨论A3C的算法原理和算法流程. 本文主要参考了A3C的论文,以及ICML 2016的deep RL tutorial. 1. A3C的引入 上一篇Actor-Critic算法的代码,其实很难收敛,无论怎么调参…
1.摘要: 提出了一种新的深度强化学习框架的新闻推荐.由于新闻特征和用户喜好的动态特性,在线个性化新闻推荐是一个极具挑战性的问题. 虽然已经提出了一些在线推荐模型来解决新闻推荐的动态特性,但是这些方法主要存在三个问题:①只尝试模拟当前的奖励(eg:点击率)②很少考虑使用除了点击 / 不点击标签之外的用户反馈来帮助改进推荐.③ 这些方法往往会向用户推荐类似消息,这可能会导致用户感到厌烦. 基于深度强化学习的推荐框架,该框架可以模拟未来的奖励(点击率) 2.引言: 新闻推荐三个问题: (1)新闻推荐…
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位进行整理. 课程表地址:https://github.com/llSourcell/Move_37_Syllabus 带字幕课程视频地址:https://www.bilibili.com/video/av31518766 本课作为导论,大致普及了一下机器学习和强化学习的概念和用途.其次,捎带介绍了一…