Semantic Segmentation using Adversarial Networks 2018-04-27 09:36:48 Abstract: 对于产生式图像建模来说,对抗训练已经取得了很好的效果.本文中,我们提出了一种对抗训练的方法来训练语义分割模型.其实这里就是加了一个对抗loss,即:用一个 CNN 来判断给定的图是分割的结果呢?还是 GT?本文方法的动机是:it can detect and correct higher-order inconsistencies betw…
FAIR Paris分部的论文,NIPS2016 Workshop. Motivation是让predict出来的结果和真实label在高层感觉上有一致性. 基本思想就是用GAN来区分segmentation网络给出的结果和真实lable给出的结果.但是VOC2012上的效果并不好,作者也不敢放代码出来.…
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完…
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量.以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的…
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille, Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 U…
3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a 动机 主要针对的任务是RGBD语义分割, 不同于往常的RGB图像的语义分割任务, 这里还可以更多的考虑来自D通道的深度信息. 所以对于这类任务需要联合2D外观和3D几何信息来进行联合推理. 深度信息编码 关于将深度信息编码为图像的方法有以下几种: 通过HHA编码来将深度信息编码为三通道: hori…
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-segmentation 摘要 RefineNet是一种生成式的多路径增强网络,在进行高分辨率的预测时,借助远距离的残差连接,尽可能多的利用下采样过程中的所有信息.这样,通过前期卷积操作得到的细粒度特征可以增强能够获得图像更高层次信息更深的网络.RefineNet的组件基于残差连接,可以进行端到端的训练.…
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇paper的时候,一直想不明白白一个问题,就是他分出了\(k^2\)个Instance-sensitive score maps,他是怎么训练的..换句话说,ground truth是怎么弄的? 文章里只说了用logistics做损失函数,应该需要看代码,因为还没有搞分割的打算,先不详细了解代码. Inst…
目录 0. 论文链接 1. 概述 2. Adapting classifiers for dense prediction 3. upsampling 3.1 Shift-and-stitch 3.2 decreasing subsampling 3.3 Deconvolution(backwards strided convolution) 4. Segmentation Architecture 5. Metric @ 0. 论文链接 FCN(https://arxiv.org/abs/14…
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed…