RGBHistogram: 分别计算把彩色图像的三个通道R.G.B的一维直方图,然后把这三个通道的颜色直方图结合起来,就是颜色的描写叙述子RGBHistogram. 以下给出计算RGBHistogram的代码: <span style="font-family:Microsoft YaHei;font-size:18px;">#include "opencv2/highgui/highgui.hpp" #include "opencv2/img…
转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 转载:https://www.cnblogs.com/wzdLY/p/9649101.html 1.离散的优势: (1)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0.如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰: (2)逻辑回归属于广义线性模…
T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)进行许可,转载署名需附带本号二维码,不可用于商业用途,不允许任何修改,任何谬误建议,请直接反馈给原作者,谢谢合作! 命名与源起 “t”,是伟大的Fisher为之取的名字.Fisher最早将这一分布命名为“Studen…
如果你在寻找卡方分布是什么?如何实现卡方检验?那么请看这篇博客,将以通俗易懂的语言,全面的阐述卡方.卡方检验及其python实现. 1. 卡方分布 1.1 简介 抽样分布有三大应用:T分布.卡方分布和$\Gamma$分布.可以简单用四个字概括它们的作用:“以小博大”,即通过小数量的样本容量去预估总体容量的分布情况.这里开始介绍卡方分布.${\chi ^{\text{2}}}$分布在数理统计中具有重要意义.  ${\chi ^{\text{2}}}$分布是由阿贝(Abbe)于1863年首先提出的,…
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检验来选择特征(降维).即来特征选择. 我这里,采取手动创建.(但是,这仅仅是为了初学者.我不建议,最好用maven) 完整代码 ChiSqSelector .scala package zhouls.bigdata.DataFeatureSelection import org.apache.spa…
特征选择(Feature Selection)指的是在特征向量中选择出那些“优秀”的特征,组成新的.更“精简”的特征向量的过程.它在高维数据分析中十分常用,可以剔除掉“冗余”和“无关”的特征,提升学习器的性能. 特征选择方法和分类方法一样,也主要分为有监督(Supervised)和无监督(Unsupervised)两种,卡方选择则是统计学上常用的一种有监督特征选择方法,它通过对特征和真实标签之间进行卡方检验,来判断该特征和真实标签的关联程度,进而确定是否对其进行选择. package Spark…
在做文本挖掘,特别是有监督的学习时,常常需要从文本中提取特征,提取出对学习有价值的分类,而不是把所有的词都用上,因此一些词对分类的作用不大,比如“的.是.在.了”等停用词.这里介绍两种常用的特征选择方法: 互信息 一个常用的方法是计算文档中的词项t与文档类别c的互信息MI,MI度量的是词的存在与否给类别c带来的信息量. 卡方是基于显著统计性来选择特征的,因此他会比MI选出更多的罕见词项,而这些词项对分类并不靠谱. 虽然卡方和互信息的出发点不同,但它们的准确性却相差不多,因为大部分文本分类问题中,…
本节内容: 1:相关分析 2:卡方分析 一.相关分析 相关系数: 皮尔逊相关系数:一般用来计算两个连续型变量的相关系数. 肯德尔相关系数:一个连续一个分类(最好是定序变量) 斯皮尔曼相关系数:2个变量无论连续还是分类都可以,但斯皮尔曼是非参数的,会损失信息,尽量不用 肯德尔:是秩的相关 要先对x和y进行排序,再计算x-y的商 #对异常值是不敏感的,异常值x是10000,排秩那他也就是4 ##研究的是收入和信用卡消费水平是否相关 散点图矩阵: 二.卡方分析 研究的是 分类跟分类之间的数据…
  一.公式 卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差   卡方检验公式 其中:A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总的频数,p为理论频率,那么n*p自然就是理论频数(理论值) 二.相关概念 卡方分布:可以看出当观察值和理论值十分接近的时候,也就是我们做的假设是正确的时候,χ2的值就越趋近于0,也就是说我们计算的偏差越小,那么假设值就越可能是对的,反之偏差值越大,假设值就越不准确.那么到底多大才算不准确,有没有个衡…
差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析.T检验和卡方检验. 三个方法的区别 其实核心的区别在于:数据类型不一样.如果是定类和定类,此时应该使用卡方分析:如果是定类和定量,此时应该使用方差或者T检验. 方差和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女.如果X为3个类别比如本科以下,本科,本科以上:此时只能使用方差分析. 进一步细分 三种方法的具体分类汇总 1)方差分析 根据X的不同,方差分析又可以进行细分.X的个数为一个时…