首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Alex网络
】的更多相关文章
Alex网络
alexNet共有八层网络卷积层1:输入224*224*3 卷积核11*11*3*96 步长为4 然后是ReLU.局部归一化.3*3步长为2的最大值池化卷积层2:输入为28*28*96 卷积核5*5*96*256 然后是ReLU.局部归一化.3*3步长为2的最大值池化卷积层3:输入14*14*256 卷积核3*3*256*384 然后是ReLU卷积层4:输入14*14*384 卷积核3*3*384*384 然后是ReLU卷积层5:输入14*14*384 卷积核3*3*384*256 然后是ReL…
AlexNet 网络详解及Tensorflow实现源码
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭建完整的AlexNet 5. 用AlexNet识别猫狗图片 5.1. 定义分类 5.2. 训练网络 5.3. 验证 1. 图片数据处理 一张图片是由一个个像素组成,每个像素的颜色常常用RGB.HSB.CYMK.RGBA等颜色值来表示,每个颜色值的取值范围不一样,但都代表了一个像素点数据信息.对图片的…
LetNet、Alex、VggNet分析及其pytorch实现
简单分析一下主流的几种神经网络 LeNet LetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出 基本过程: 可以看到LeNet-5跟现有的conv->pool->ReLU的套路不同,它使用的方式是conv1->pool->conv2->pool2再接全连接层,但是不变的是,卷积层后紧接池化层的模式依旧不变. 代码: import torch.nn as nn import torch class LeNet(nn.Module…
深度学习基础(二)AlexNet_ImageNet Classification with Deep Convolutional Neural Networks
该论文是深度学习领域的经典之作,因为自从Alex Krizhevsky提出AlexNet并使用GPUs大幅提升训练的效率之后,深度学习在图像识别等领域掀起了研究使用的热潮.在论文中,作者训练了一个含有 60 million个参数和650000个神经元的深度卷积神经网络对ImageNet LSVRC-2010中1.2million个高分辨率彩色图像进行分类,最终取得出色的结果.在论文中作者详细描述了网络架构以及训练过 程,同时作者也对Alex网络中的一些特点及创新之处进行了介绍.下面我会记录下阅读…
0005-20180422-自动化第六章-python基础学习笔记
day6 内容回顾: 1. 变量 2. 条件 3. while循环 4. 数据类型 - int - bit_length - bool - True/False - str - upper - lower - strip - split - replace - join - capitalize - startswith - endswith - isdecimal - list - append - insert - reverse - tuple - - dict - get - items…
深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得what这个数值 # test.py import sys print(sys.argv[1:]) 2. tf.split(value=x, num_or_size_split=2, axis=3) # 对数据进行切分操作,比如原始维度为[1, 227, 227, 96], 切分后的维度为[2, 1,…
学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优.目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特定任务的神经网络. 本篇博文主要简单讲述怎么使用TensorFlow调用预训练好的VGG网络,其他的…
Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)
本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程序 补充:动态导入模块+断言 # __import__('import_lib.aa') #这是解释器自己内部用的 # importlib.import_module('import_lib.metaclass') #与上面这句效果一样,官方建议用这个 # 方法一: import importlib…
事件驱动之Twsited异步网络框架
在这之前先了解下什么是事件驱动编程 传统的编程是如下线性模式的: 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结束 每一个代码块里是完成各种各样事情的代码,但编程者知道代码块A,B,C,D...的执行顺序,唯一能够改变这个流程的是数据.输入不同的数据,根据条件语句判断,流程或许就改为A--->C--->E...--->结束.每一次程序运行顺序或许都不同,但它的控制流程是由输入数据和你编写的程序决定的.…
[Android Pro] 网络流量安全测试工具Nogotofail
reference to : http://www.freebuf.com/tools/50324.html 从严重的HeartBleed漏洞到苹果的gotofail 漏洞,再到最近的SSL v3 Poodle漏洞……我们已经见识到了网络流量漏洞所带来的巨大灾难.于是“谷人希”来了!谷歌公司最新开发了一款工具——Nogotofail,它可以帮助开发者检测网络流量类的安全漏洞. 让所有联网设备免受TLS和SSL加密漏洞的攻击 安卓安全工程师Chad Brubaker称,开发Nogotofail的最…