题目分析: 写的无旋treap应该跑不过,但bzoj判断的总时限.把相关实现改成线段树合并就可以了. 代码: #include<bits/stdc++.h> using namespace std; ; int n; ],num,val[maxn]; ][],sz[maxn],rot[maxn],data[maxn],key[maxn]; ; int merge(int r1,int r2){ ) ) return r1; if(key[r1] < key[r2]){ son[r1][]…
题目链接 BZOJ2212 题解 一棵子树内的顺序不影响其与其它子树合并时的答案,这一点与归并排序的思想非常相似 所以我们只需单独处理每个节点的两棵子树所产生的最少逆序对即可 只有两种情况,要么正序要么逆序,且这两种情况数目是互补的 如果左子树大小为\(S_l\),右子树大小为\(S_r\),那么总对数为\(S_lS_r\) 如何快速统计一棵子树中大于另一棵子树中权值的对数? 开一个权值线段树,在线段树合并过程中统计即可 由于权值是一个排列,所以复杂度是\(O(nlogn)\) 顺带一提,左右儿…
2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submit][Status] Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists o…
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换左右子树无关,是否交换左右子树取决于交换后 “跨越 x 左子树与右子树的逆序对” 是否会减小. 因此我们要求出两种情况下的逆序对数,使用线段树合并,对每个节点建一棵线段树,然后合并的同时就求出两种情况下的逆序对. 代码 #include <iostream> #include <cstdli…
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 题解 线段树合并. 博主很懒,题解不写了. 这份代码是仿照别人的写的. 代码 #include <cstring> #include <cstdio> #include <cmath> #include <al…
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cstring> #define Sqr(x) ((x)*(x)) using namespace std; const int N = 2e5 + 5; const int…
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the gro…
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #define M(l, r) (((l) + (r)) >> 1) typedef long long ll; ; ; struct Node *null, *pt; struct Node { Node *l, *r; int cnt; Node() : cnt() { l = r = null; }…
2212: [Poi2011]Tree Rotations https://www.lydsy.com/JudgeOnline/problem.php?id=2212 分析: 线段树合并. 首先对每个节点建立一棵权值线段树,然后遍历整棵树,从叶子节点开始合并,每次合并两个节点的主席树,判断是否交换这两个节点,求出这两个节点分在前面所形成的逆序对. 求逆序对:对于主席树中的右子树一定比左子树大,所以每次合并一个节点时,直接用右子树的个数乘以左子树的个数,不断递归. 代码: #include<cst…
POI2011 Tree Rotations 给定一个n<=2e5个叶子的二叉树,可以交换每个点的左右子树.要求前序遍历叶子的逆序对最少. 由于对于当前结点x,交换左右子树,对于范围之外的逆序对个数并没有影响,所以可以进行线段树合并,合并时统计l在左边还是在右边更优. #include <cstdio> #include <cctype> using namespace std; typedef long long LL; inline void read(int &…