记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对. 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码. mnist数据集训练数据一共有28*28*60000个像素,标签有60000个. 测试数据一共有28*28*10000个,标签10000个. 这里神经网络输入层是784个像素,用了100个隐含层,最终10个输出结果. arc代表的是神经网络结构,可以增加隐含层,不过我试了没太大效果,毕竟梯度消失. 因为是最普通的神经网络,最终识别错误率大概在5%左右. 迭…
Tensorflow实现softmax regression识别手写数字 MNIST手写数字识别可以形象的描述为机器学习领域中的hello world. MNIST是一个非常简单的机器视觉数据集.它由几万张28*28像素的手写数字组成,这些图片只包含灰度值信息.我们的任务就是对这些手写数字进行分类.转换为0-9共十个分类. 首先在命令行中运行如下代码加载MNIST手写数据集: from tensorflow.examples.tutorials.mnist import input_data #…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
MNIST手写数据集的识别算得上是深度学习的”hello world“了,所以想要入门必须得掌握.新手入门可以考虑使用Keras框架达到快速实现的目的. 完整代码如下: # 1. 导入库和模块 from keras.models import Sequential from keras.layers import Conv2D, MaxPool2D from keras.layers import Dense, Flatten from keras.utils import to_categor…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 导读 MNIST数据集 数据处理 单层隐藏层神经网络的实现 多层隐藏层神经网络的实现 导读 就像我们在学习一门编程语言时总喜欢把"Hello World!"作为入门的示例代码一样,MNIST手写数字识别问题就像是深度学习的"Hello World!".通过这个例子,我们将了解如何将数据转化为神经网络所需要的数据格式,以及如何使用TensorF…
今天在运行手写数据集的过程中,出现一个问题,代码没有问题,但是运行的时候一直报错,错误如下: urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1051)> 查询网上的各种博客什么的,最后貌似是因为python3的原因出现的,目前采用的解决方案是在代码的顶端…
MNIST数据集介绍 MNIST数据集中包含了各种各样的手写数字图片,数据集的官网是:http://yann.lecun.com/exdb/mnist/index.html,我们可以从这里下载数据集.使用如下的代码对数据集进行加载: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) 运行上述代码会自动下载数…
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data #设置输入参数 batch_size = 128 test_size = 256 # 初始化权值与定义网络结构,建构一个3个卷积层和3个池化层,一个全连接层和一个输出层的卷积神经网络 # 首先定义初始化权重函数 def init_weights(shape): return tf.Variabl…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #构建回归模型,输入原始真实值(group truth),采用sotfmax函数拟合,并定义损失函数和优化器 #定义回归模型 x = tf.placeholder(tf.float32,…
import os import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data tf.reset_default_graph() INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 CONV1_DEEP = 32 CONV1_SIZE = 5…