首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
hdu2586How far away ?(LCA LCATarjan离线)
】的更多相关文章
hdu2586How far away ?(LCA LCATarjan离线)
题目链接:acm.hdu.edu.cn/showproblem.php?pid=2586 题目大意:有n个点,同n-1条带有权值的双向边相连,有m个询问,每个询问包含两个数x,y,求x与y的最短距离. 例: Sample Input 2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1 Sample Output 10 25 100 100 解题思路:因为n个节点,含有n-1条边,我们可以把它看成一颗树,然后我们把1号节点看成这颗树的根节点,这样…
HDU-2586-How far away(LCA Tarjan离线算法)
链接:https://vjudge.net/problem/HDU-2586 题意: 勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候,为了让小镇有特色,镇长特地只修了n-1条路,并且规定说,所有在勇气小镇的村民,每一次出门必须规划好路线, 路线必须满足在到达终点之前绝对不走回头路.每个人都要这样,不然那个人就不配在小镇生活下去,因为他没有这个勇气.事实上,这并不能算一项挑战,因为n-1条路已经连通了每户人家,不回头地从起点到终点…
poj 1986 Distance Queries(LCA:倍增/离线)
计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解: #include<cstdio> #include<cstring> #include<queue> #include<algorithm> #define rep(i,a,b) for(int i=a;i<=b;i++) #define clr(a,…
bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status][Discuss] Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. 有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[…
poj 1330 LCA (倍增+离线Tarjan)
/* 先来个倍增 */ #include<iostream> #include<cstring> #include<cstdio> #define maxn 10010 using namespace std; ],dep[maxn],out[maxn],root; struct node { int u,v,t,pre; }e[maxn*]; void Add(int from,int to) { num++; e[num].u=from; e[num].v=to;…
POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accepted: 4340 Description Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the…
最近公共祖先LCA Tarjan 离线算法
[简介] 解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问.换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法. [原理] 先来看这样一个性质:当两个节点(u,v)的最近公共祖先是x时,那么我们可以确定的说,当进行后序遍历的时候,必然先访问完x的所有子树,其中包含u.v,然后才会返回到x所在的节点.这个性质就是我们使用Tarjan算法解决最近公共祖先问题的核心思想. 如上图所示,找出根节点到u得关键路径P ,已遍历的点位于路径P中某个点的子树中,当遍…
POJ1470 LCA (Targan离线)
bryce1010模板 http://poj.org/problem?id=1470 /*伪代码 Tarjan(u)//marge和find为并查集合并函数和查找函数 { for each(u,v) //访问所有u子节点v { Tarjan(v); //继续往下遍历 marge(u,v); //合并v到u上 标记v被访问过; } for each(u,e) //访问所有和u有询问关系的e { 如果e被访问过; u,e的最近公共祖先为find(e); } } */ //思想 /* 1.任选一个点为…
LCA的离线快速求法
最常见的LCA(树上公共祖先)都是在线算法,往往带了一个log.有一种办法是转化为"+-1最值问题"得到O(n)+O(1)的复杂度,但是原理复杂,常数大.今天介绍一种允许离线时接近线性求LCA的方法. 一个点和其他点的LCA必定是它到root路径上的所有节点之一,而另一个节点刚好在哪个节点下,LCA就是谁: 如图,标粗的箭头为当前搜索的路径,左边为已经搜索完毕的路径,右边的黑色节点尚未搜索.现在要求节点cur和节点a的LCA,显然a是什么颜色,LCA就也是这个颜色,如果a还没有被搜索到…
POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)
Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <string> #include <vector> /* AC 一开始读取数据的方式并不好,运行900多ms. 后来参照…