MT【253】仿射和蒙日圆】的更多相关文章

如图,设点$M(x_0,y_0)$是椭圆$C:\dfrac{x^2}{2}+y^2=1$上一点,从原点$O$向圆$M:(x-x_0)^2+(y-y_0)^2=\dfrac{2}{3}$作两条切线分别与椭圆$C$交于$P,Q$,直线$OP,OQ$的斜率分别为$k_1,k_2$(1)求证:$k_1k_2$为定值(2)求四边形$OPQM$面积的最大值. 分析:涉及到面积最大容易想到仿射变换:(1)$$\begin{cases} x^{'}&=x\\ y^{'}&=\sqrt{2}y\end{ca…
求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$ $=\sqrt{(\dfrac{1}{2}\cos x)^2+(1-\dfrac{1}{2}\sin x)^2}+2\sqrt{(\dfrac{1}{2}\cos x+1)^2+(\dfrac{1}{2}\sin x-1)^2…
另一方面,如果 M 满足(1)式,那么M必然在以PQ为直径的圆上.事实上当M为P或者Q时,这是显然的.当M异于P,Q时,由$\frac{|MB|}{|MC|}=\frac{|PB|}{|PC|}=\lambda,\frac{|MB|}{|MC|}=\frac{|QB|}{|QC|}=\lambda$知MP,MQ分别是$\angle{BMC}$的内角平分线和外交平分线,故$\angle{PMQ}=90^0$,即M在以PQ为直径的圆上. 评:阿式圆因为涉及到内角平分线和外角平分线又称为内外圆,在有些…
$P,Q$是两个定点,M为平面内一个动点,且$\dfrac{|MP|}{|MQ|}=\lambda(\lambda>0,\lambda\ne1)$, 点M的轨迹围成的区域面积为S , 设$S=f(\lambda)$,则(     ) A.$f(\lambda)$在$(0,1)$单调递增,在$(1,+\infty)$单调递减B.$f(\lambda)$在$(0,1)$单调递减,在$(1,+\infty)$单调递增C.$f(\lambda)$在$(0,1),(1,+\infty)$单调递增D.$f(…
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$|PF|$所有可能值. 解答:不妨设$AO:y=kx(k>0)$,联立方程$y=kx,y^2=4x$得$A(\dfrac{4}{k^2},\dfrac{4}{k})$ $AB:y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1…
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ|$的最大值_____ 分析:$|PQ|_{max}=2-\sqrt{3}$,一般的最大值为$a-b$(证明见:浙江2014高考解析解答题)…
(2017湖南省高中数学竞赛16题) \(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\) (1)求证:\(|CD|^2-|AB|^2=4|EF|^2\) 其中\(E,F\)为\(AB,CD\) 的中点. (2)证明:\(A,B,C,D\) 四点共圆. 证明第(2)问: 设\(AB,CD\)的交点\(P(x_0,y_0)\),过点\(P\)的直线方程为 \[\begin{equation*} \l…
分析:利用内外圆知识知道,B,C两点到 AD 的距离$\le4$. 利用体积公式$V=\frac{1}{3}S_{截面}|AD|\le2\sqrt{15}$…
已知$f(x)=2\sqrt{(\cos x+\frac{1}{2})^2+\sin^2 x}-\sqrt{\cos^2 x+(\sin x-\frac{1}{2})^2}$,若$m\ge f(x)$恒成立,求$m$的范围_______. 提示: 设 $A'(-\dfrac{1}{2},0),B(0,\dfrac{1}{2}),A(-2,0),P(x,y)$为单位圆上的点, 则$f(x)=2|PA'|-|PB|=|PA|-|PB|\le |AB|=\dfrac{\sqrt{17}}{2}$故$m…
1 源文件 main.cpp 2 //点和圆的关系 3 //设计一个圆形类 和一个点类 计算点和圆的关系 4 //点到圆心的距离 == 半径 点在圆上 5 //点到圆心的距离 > 半径 点在圆外 6 //点到圆心的距离 < 半径 点在圆内 7 //点到圆心的距离 获取 ....... (x1 -x2)^2 + (y1-y2)^2 开根号 和半径对比 8 // 计算 可以 两边同时 平方 9 #include <iostream> 10 #include<string>…