题目大意 ​ 有\(n\)盏灯,\(m\)个限制.每个限制\((x,y)\)表示第\(x\)盏灯与第\(y\)盏灯之间必须且只能亮一盏. ​ 记一种情况\(x\)亮着的灯的数量为\(f_x\),求\(\sum {(f_x)}^k\) ​ \(n\leq 200000,k\leq 100\) 题解 ​ 我们先把整张图黑白染色. ​ 如果不是二分图就无解. ​ 我们发现两个不同的联通分量的灯的状态是没有关系的. ​ 我们可以考虑DP: ​ \(f_{i,j}=\)前\(i\)个联通分量中亮的彩灯个数…
传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\)个人选\(r\)个的方案,第二类斯特拉数处理分组的情况即可. /* * Author: heyuhhh * Created Time: 2019/12/10 19:14:48 * dp预处理+第二类斯特林数 */ #include <iostream> #include <algorith…
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是用第二类斯特林数转化一下,这样可以预处理第二类斯特林数,而sigma(C(dist(u,v),i))则利用C(n,x)=C(n-1,x)+C(n-1,x-1)来进行树DP转移得到. 设dp[u][k]=sigma(C(dist(u,v),k)),则dp[u][k]=dp[v][k]+dp[v][k-…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/details/80882581 https://www.cnblogs.com/Wuweizheng/p/8638858.html http://www.cnblogs.com/zhouzhendong/p/Stirling-Number.html https://blog.csdn.net/qq_…
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times j!\times{dis(i,u)\choose j}\] \[\sum_{j=1}^nS(k,j)\times j!\sum_{i=0}^k{dis(i,u)\choose j}\] 于是对于每个点只要维护好\(\sum_{i=0}^k{dis(i,u)\choose j}\)就好了 因为\({n…
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不限. 要求结果对\(p\)取模.然后给你\(n\)个数,表示第 \(i\) 根绳长 \(l_i\),也就是要挂 \(l_i\) 个球. \(1.\)要求每根绳上相邻彩球颜色不同. \(2.\)相邻的绳子上挂的彩球种类不能相同. 题解: 我们先解决子问题,先考虑第 \(i\) 层上能放多少个球,\(a…
题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \(\displaystyle \sum_{i=1}^n{\rm dist}^k(i,j)\),其中 \(\rm{dist}\) 函数表示树上两点距离. ​ \(1 \leq n \leq 50000\) ​ \(1\leq k \leq 150\) 思路 ​ 看到求答案 \(k\) 次方的问题,应该联…
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\)这种东西变成组合数去求,具体来说就是\(n^k=\sum\limits_{i=1}^k\dbinom{n}{i}*S[k][i]*i!\),\(S\)表示第二类斯特林数,第二类斯特林数可以表示为有\(n\)个盒子要装\(m\)个小球,然后在给盒子和求加上编号就可以得出上面的式子.这样的话在根据帕斯卡…
题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项式转成下降幂多项式.这一步可以做到\(O(mlogm)\),(模板)但是这题不需要,这个后面再说.假设现在已经得出了f的下降幂多项式的系数\(b_i\),则: \[\begin{align} f(k)&=\sum_{i=0}^m b_ik^{\underline i}\\ ans&=\sum_…
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\),因此需要换别的方法. 注意到自然指数幂和第二林斯特林数之间的关系: \[n^k=\sum_{i=0}^k \begin{Bmatrix}k\\i\end{Bmatrix}{n\choose i}i!\] 那么将答案式化简 \[\begin{aligned} Ans_x&=\sum_{i=1}^N…
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s memory limit per test 64 MB input galactic.in output standard output Altanie is a very large and strange country in Mars. People of Mars ages a lot. So…
题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为  或者 . 第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下: (1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合.方案数 . (2)如果n个元素已…
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}…
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)\] \[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k…
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k\le 5000$. 很水的一道题. 根据第二类斯特林数的性质: $$n^k=\sum^k_{i=1}\begin{Bmatrix}k\\i\end{Bmatrix}i!\dbinom{n}{i}$$ 那么直接套进去: $$\sum\limits^n_{i=1}\dbinom{n}{i}\sum^k…
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权值为$V(R)=\sum\limits_{S\in R} W(S)$.求将n个物品划分成k个集合的所有方案的权值和. $n,k\le 2\cdot 10^5,w_i\le 10^9$ 题解:第二类斯特林数针是太好用辣! 显然每个物品都是独立的,所以我们只需要处理出每个物品被统计的次数即可,说白了就是…
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子. 首先回忆一下第二类斯特林数关于整数幂的计算公式: \[m^n=\sum_{i=0}^mC_{m}^i*S(n,i)*i!\] \(m^n\)理解为把\(n\)个不同的球放到\(m\)个不同的盒子中去.那么我们枚举有几个盒子非空,用第二类斯特林数乘阶乘计算放置的方案数,最后求和就是结果. 那么直接…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\)就是: \[\begin{aligned} p&=\sum_{i=1}^n{n-1\choose i-1}i\begin{Bmatrix}n-i\\k-1\end{Bmatrix}\\ &=\sum_{i=1}^n{n-1\choose i-1}i\frac{1}{(k-1)!}\sum_{…
Rank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 433    Accepted Submission(s): 207 Problem Description Recently in Teddy's hometown there is a competition named "Cow Year Blow Cow".N c…
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 \choose 2}}n \sum\limits_{i = 0}^{n - 1} {n - 1 \choose i} i^k\] 显然要求 \[\sum\limits_{i = 0}^{n} {n \choose i} i^k\] 然后我就不知道怎么做了.. 翻翻题解 有这样一个结论: \[n^k…
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1933 Accepted Submission(s): 711 Problem DescriptionA Baidu’s engineer needs to anal…
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=p]=\sum_{p=1}^ns(p)^k(-1+2\sum_{i=1}^{n/p}\varphi(i))\) 由于 \(n\) 的范围是 \(10^9\) ,对于后面的我们最多只有根号种取值,根据套路,可以杜教筛/Min_25筛一波. 至于前面的东西,我们可以考虑Min_25筛的过程:…
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n^2logn)的,还不如暴力,但是我们发现,对于刚刚提到的容斥的式子,将其化为卷积形式后,其一边的每一项对于每一个i都相同,另一边的每一项是对于所有的i形成一个n项的等比数列,这样我们可以把成等比数列的一边求和,用固定的一边去卷他们的和,这时候的答案的每一项就是所有的i的这一项的和,然后我们再O(n…
题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_n^ii^k\\ &\sum\limits_{i=1}^n C_n^i\sum\limits_{j=0}^iC_i^j\begin{Bmatrix}k\\j\end{Bmatrix}j!\\ &\sum\limits_{i=1}^n \frac{n!}{(n-i)!}\sum\limits_{…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k}(j-k)^{i} \) 大概是容斥枚举空的盒子个数.https://www.cnblogs.com/gzy-cjoier/p/8426987.html 在这道题里,先把 j 提到前面,再把组合数展开,推一推式子发现 j 之后的那部分是…
题目链接:http://codeforces.com/gym/101147/problem/G 题意:n个人,去参加k个游戏,k个游戏必须非空,有多少种放法? 分析: 第二类斯特林数,划分好k个集合后乘以阶乘: #include <bits/stdc++.h> using namespace std; ; + 7L; long long stir[maxn][maxn]; long long fac[maxn]; void init() { fac[] = fac[] = ; ;i<=;…
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.   Input 第一行包含两个正整数n,…
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][Status][Discuss] Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j &l…
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1. 边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i) 你能帮帮他吗? 输入格式 输入只有一个正整数 输出格式 输出f(n).由于结果会很大,输出f(n)对998244353(7…