网站响应速度优化包括集群架构中很多方面的瓶颈因素,这里所说的将页面静态化.实现分布式高速缓存就是其中的一个很好的解决方案... 1)先来看看Nginx负载均衡 Nginx负载均衡依赖自带的 ngx_http_upstream_module . ngx_http_memcached_module两大功能模块,其中一致性hash算法Nginx本身是不支持的,可以借助第三方模块: ngx_http_upstream_consistent_hash 或者直接使用淘宝的Tengine: http://te…
由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式. Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取.我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希.因为Memcached的哈希策…
32的整数环(这个环被称作一致性Hash环),根据节点名称的Hash值(其分布范围同样为0~232)将节点放置在这个Hash 环上.然后根据KEY值计算得到其Hash值(其分布范围也同样为0~232 ),然后在Hash环上顺时针查找距离这个KEY的Hash值最近的节点,完成KEY到节点的Hash映射查找.         一致性哈希所带来的最大变化是,当然根据集群规模和负载均衡的精度需求,这个值应该根据具体情况具体对待. 代码实现(Java): https://github.com/Jerome…
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几个概念. 分布式 分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务. 以一个航班订票系统为例,这个航班订票系统有航班预定.网上值机.旅客信息管理.订单管理.运价计算等服务模块.现在要以集中式(集群,cluster)和分布式的方式进行部署,…
分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几个概念. 分布式 分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务. 现有系统system,有modelA.modelB.modelC等服务模块.现在要以集中式(集群,cluster)和分布式的方式进行部署,下面我们来看看它们部…
写在前面  在学习Redis的集群内容时,看到这么一句话:Redis并没有使用一致性hash算法,而是引入哈希槽的概念.而分布式缓存Memcached则是使用分布式一致性hash算法来实现分布式存储.所以就专门学习了一下 什么是分布式?什么是一致性?什么是哈希?  1)分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务.“分布式一致性hash算法”中的“分布式”就是指缓存数据的分布性.         集中式将一个系统的所有服务模块部署…
一.概述 1.我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同,只是对我们要存储数据的key进行hash计算,分配到不同节点存储.一致性hash算法是对我们要存储数据的服务器进行hash计算,进而确认每个key的存储位置.  2.常规hash算法的应用以及其弊端 最常规的方式莫过于hash取模的方式.比如集群中可用机器适量为N,那么key值为K的的数据请求很简单的应该路由到hash(K…
今天阅读了一下大型网络技术架构这本苏中的分布式缓存一致性hash算法这一节,针对大型分布式系统来说,缓存在该系统中必不可少,分布式集群环境中,会出现添加缓存节点的需求,这样需要保障缓存服务器中对缓存的命中率,就有很大的要求了: 采用普通方法,将key值进行取hash后对分布式缓存机器数目进行取余,以集群3台分布式缓存为例子: 对于数据进行取hash值然后对3其进行取余,余数为0则进入node 0,余数位1则进入node1,余数位2则进入node2. 如果增加一个节点则对4进行取余,则会将node…
缓存作为数据库前的一道屏障,它的可用性与缓存命中率都会直接影响到数据库,所以除了配置主从保证高可用之外还需要设计分布式缓存来扩充缓存的容量,将数据分布在多台机器上如果有一台不可用了对整体影响也比较小.不多说,你懂我意思的! 缓存的分布式集群和应用服务器不同,缓存的分布式是每台机器上的缓存数据是不一样的,不像应用服务器是无状态的,每台机器上的服务是一致的.缓存访问请求不可以在缓存服务器集群中的任意一台处理,必须找到缓存有需要数据的服务器.所以保证在新上线机器和删除机器的时候整个集群中的已经缓存的数…
当服务器不多,并且不考虑扩容的时候,可直接使用简单的路由算法,用服务器数除缓存数据KEY的hash值,余数作为服务器下标即可. 但是当业务发展,网站缓存服务需要扩容时就会出现问题,比如3台缓存服务器要扩容到4台,就会导致75%的数据无法命中,当100台服务器中增加一台,不命中率会到达99%(n/(n+1)),这显然是不能接受的. 在设计分布式缓存集群的时候,需要考虑集群的伸缩性,也就是当向集群中增加服务器的时候,要尽量减小对集群的影响,而一致性hash算法就是用来解决集群伸缩性. 一致性hash…