spark原理】的更多相关文章

1 Spark原理分析 -- RDD的Partitioner原理分析 2 Spark原理分析 -- RDD的shuffle简介 3 Spark原理分析 -- RDD的shuffle框架的实现概要分析 4 Spark原理分析 -- RDD的依赖(Dependencies)原理分析 5 Spark原理分析 -- RDD的checkepointing原理分析 6 Spark原理分析 -- RDD的caching和persistence原理分析 7 Spark原理分析 -- Job执行框架概述 8 Sp…
1.spark是什么? 快速,通用,可扩展的分布式计算引擎 2.弹性分布式数据集RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. RDD的属性 1)一组分片(Partition),即数据集的基本组…
如何判断宽窄依赖: =================================== 6. Spark 底层逻辑 导读 从部署图了解 Spark 部署了什么, 有什么组件运行在集群中 通过对 WordCount 案例的解剖, 来理解执行逻辑计划的生成 通过对逻辑执行计划的细化, 理解如何生成物理计划   如无特殊说明, 以下部分均针对于 Spark Standalone 进行介绍 部署情况 在 Spark 部分的底层执行逻辑开始之前, 还是要先认识一下 Spark 的部署情况, 根据部署情…
1.spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速.因此运行spark的机器应该尽量的大内存,如96G以上. 2.spark所有操作均基于RDD,操作主要分成2大类:transformation与action. 3.spark提供了交互处理接口,类似于shell的使用. 4.spark可以优化迭代工作负载,因为中间数据均保存于内存中. 5.spark 是在 Scala 语言中实现的,它可以使用scala.python进行交互式操作,还可以使用scala.python.…
SparkContext将应用程序代码分发到各Executors,最后将任务(Task)分配给executors执行 Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码 Driver:  Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有S…
1.spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速.因此运行spark的机器应该尽量的大内存,如96G以上. 2.spark所有操作均基于RDD,操作主要分成2大类:transformation与action. 3.spark提供了交互处理接口,类似于shell的使用. 4.spark可以优化迭代工作负载,因为中间数据均保存于内存中. 5.spark 是在 Scala 语言中实现的,它可以使用scala.python进行交互式操作,还可以使用scala.python.…
原文来自我的个人网站:http://www.itrensheng.com/archives/Spark_basic_knowledge 一. Spark出现的背景 在Spark出现之前,大数据计算引擎主要是MapReduce.HDFS + MapReduce的组合几乎可以实现所有的大数据应用场景.MR框架抽象程度比较高,需要我们编写Map和Reduce两个步骤(MapReduce 框架其实包含5 个步骤:Map.Sort.Combine.Shuffle以及Reduce) 每个Map和Reduce…
Hadoop原理 分为HDFS与Yarn两个部分.HDFS有Namenode和Datanode两个部分.每个节点占用一个电脑.Datanode定时向Namenode发送心跳包,心跳包中包含Datanode的校验等信息,用来监控Datanode.HDFS将数据分为块,默认为64M每个块信息按照配置的参数分别备份在不同的Datanode,而数据块在哪个节点上,这些信息都存储到Namenode上面.Yarn是MapReduce2,可以集成更多的组件,如spark.mpi等.MapReduce包括Job…
Hadoop 和 Spark 的关系 Spark 运算比 Hadoop 的 MapReduce 框架快的原因是因为 Hadoop 在一次 MapReduce 运算之后,会将数据的运算结果从内存写入到磁盘中,第二次 Mapredue 运算时在从磁盘中读取数据,所以其瓶颈在2次运算间的多余 IO 消耗. Spark 则是将数据一直缓存在内存中,直到计算得到最后的结果,再将结果写入到磁盘,所以多次运算的情况下, Spark 是比较快的. 其优化了迭代式工作负载 Hadoop的局限 Spark的改进 抽…
本书中所使用到的测试数据.代码和安装包放在百度盘提供 下载 ,地址为https://pan.baidu.com/s/1o8ydtKA 密码:imaa 另外在百度盘提供本书附录  下载 ,地址为http://pan.baidu.com/s/1o7Busye 密码:shdf 为什么要写这本书 在过去的十几年里,由于计算机普遍应用和互联网的普及数据呈现了爆发式增长,在这个背景下Doug Cutting受到谷歌两篇论文(GFS和MapReduce)的启发下开发Nutch项目, 2006年Hadoop脱离…
前言: spark最近非常的火热, 本文不讲spark原理, 而是研究spark集群搭建和服务的脚本是如何编写的, 管中窥豹, 希望从运行脚本的角度去理解spark集群. 研究的spark为1.0.1版. spark集群采用standalone模式搭建, 其基础架构为master-slave(worker模式, 单master+多slave(worker)节点构成. 脚本目录start-all.sh 作用: 启动整个集群stop-all.sh 作用: 关闭整个集群start-master.sh…
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及应用监控等重要模块 Spark生态圈深度检阅:SQL处理Shark和Spark SQL.流式处理Spark Streaming.图计算Graphx及内存文件系统Tachyon 内容简介 书籍计算机书籍 <Spark大数据处理技术>以Spark 0.9版本为基础进行编写,是一本全面介绍Spark及S…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
链接相关 课件代码:http://pan.baidu.com/s/1nvbkRSt 教学视频:http://pan.baidu.com/s/1c12XsIG 这是最近买的付费教程,对资料感兴趣的可以在下方留下邮件地址,我会定期进行密码发送. 课程简介 以目前主流的,最新的spark稳定版2.1.x为基础,深入浅出地介绍Spark生态系统原理及应用,内容包括Spark各组件(Spark Core/SQL/Streaming/MLlib)基本原理,使用方法,实战经验以及在线演示.本课程精心设计了五个…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/rlnLo2pNEfx9c/article/details/82505159 今天.主要想聊聊spark streaming的使用心得. 1,基本使用 主要是转换算子.action.和状态算子,这些事实上,就依照api手冊或者源代码里接口介绍结合业务来编码. 事实上.想用好spark streaming 掌握spark core,spark rpc,spark 任务调度,spark 并行度等原理还非…
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调优经验 3.1 Spark原理及调优工具 3.2 运行环境优化 3.2.1 防止不必要的分发 3.2.2 提高数据本地性 3.2.3 存储格式选择 3.2.4 选择高配机器 3.3 优化操作符 3.3.1 过滤操作导致多小任务 3.3.2 降低单条记录开销 3.3.3 处理数据倾斜或者任务倾斜 3.…
1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率.然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求. 2.搜索引擎会通过日志文件把用户每次检索使用的所有…
本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,在此以知识共享为初衷公开部分内容,如有兴趣,请支持正版书籍. Spark综合了前人分布式数据处理架构和语言的优缺点,使用简洁.一致的函数式语言Scala作为主要开发语言,同时为了方便更多语言背景的人使用,还支持Java.Python和R语言.Spark因为其弹性分布式数据集(RDD)的抽象数据结构设计,通过实现抽象类RDD可以产生面对不同应用场景的子类.本章将先介绍Spark编程模型.RDD的相关概念.常用API源码及应用案例,…
本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,在此以知识共享为初衷公开部分内容,如有兴趣,请支持正版书籍. Spark为使用者提供了大量的工具和脚本文件,使得其部署与开发变得十分方便快捷,本章将会分别从运行(含集群部署).开发以及源码编译三个角度,来介绍Spark相关环境的具体配置流程.对于初次接触Spark的读者,建议仅需阅读运行环境部署和开发环境部署两节内容,如果后期有源码编译或者源码学习需求,再回头来阅读相关章节. 2.1  Spark运行环境配置 Spark能够运行…
本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,如有兴趣,请支持正版书籍. 随着互联网为代表的信息技术深度发展,其背后由于历史积累产生了TB.PB甚至EB级数据量,由于传统机器的软硬件不足以支持如此庞大的数据量的存储.管理及分析能力,因而专门应对大数据的分布式处理技术应运而生.如今业界大数据处理的主流平台非Hadoop和Spark莫属,本书主要介绍大数据平台的后起之秀Spark,目的是通过系统学习让读者了解和应用大数据,进而提炼大数据中蕴藏的价值. 本章主要向读者介绍Spar…
原文连接 http://xiguada.org/spark/ Spark概述 当前,MapReduce编程模型已经成为主流的分布式编程模型,它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上.但是MapReduce也存在一些缺陷,如高延迟.不支持DAG模型.Map与Reduce的中间数据落地等.因此在近两年,社区出现了优化改进MapReduce的项目,如交互查询引擎Impala.支持DAG的TEZ.支持内存计算Spark等.Spark是UC Berkeley AM…
  Spark集群 一组计算机的集合,每个计算机节点作为独立的计算资源,又可以虚拟出多个具备计算能力的虚拟机,这些虚拟机是集群中的计算单元.Spark的核心模块专注于调度和管理虚拟机之上分布式计算任务的执行,集群中的计算资源则交给Cluster Manager这个角色来管理,Cluster Manager可以为自带的Standalone.或第三方的Yarn和Mesos.Cluster Manager一般采用Master-Slave结构.以Yarn为例,部署ResourceManager服务的节点…
作者编辑:杜晓蝶,王玮,任泽 Spark 静态内存管理详解 一. 内容简介 spark从1.6开始引入了动态内存管理模式,即执行内存和存储内存之间可以互相抢占.spark提供两种内存分配模式,即:静态内存管理和动态内存管理.该系列文章分别对这两种内存管理模式的优缺点以及设计原理进行了分析.该篇文章主要针对spark1.6静态内存管理进行了分析与说明.动态内存管理以及其他的调优文章后期会陆续为大家呈现,请大家关注furion.此外本文会涉及到很多spark的概念,如果读者对spark比较陌生,可以…
作者编辑:王玮,胡玉林 一.回顾 在前面的一篇文章中我们介绍了spark静态内存管理模式以及相关知识https://blog.csdn.net/anitinaj/article/details/80901328 在上一篇文章末尾,我们陈述了传统spark静态内存管理模式的局限性:(1) 没有适用于所有应用的默认配置,通常需要开发人员针对不同的应用进行不同的参数配置.比如根据任务的执行逻辑,调整shuffle和storage内存占比来适应任务的需求.(2) 这样需要开发人员具备较高的spark原理…
环境 spark-1.6 python3.5 一.python开发spark原理使用python api编写pyspark代码提交运行时,为了不破坏spark原有的运行架构,会将写好的代码首先在python解析器中运行(cpython),Spark代码归根结底是运行在JVM中的,这里python借助Py4j实现Python和Java的交互,即通过Py4j将pyspark代码“解析”到JVM中去运行.例如,在pyspark代码中实例化一个SparkContext对象,那么通过py4j最终在JVM中…
spark入门教程(3)--Spark 核心API开发 原创 2016年04月13日 20:52:28 标签: spark / 分布式 / 大数据 / 教程 / 应用 4999 本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,在此以知识共享为初衷公开部分内容,如有兴趣,请支持正版书籍. Spark综合了前人分布式数据处理架构和语言的优缺点,使用简洁.一致的函数式语言Scala作为主要开发语言,同时为了方便更多语言背景的人使用,还支持Java.Python和R语言.Spark因…
shuffle 简介 shuffle 描述了数据从 map task 输出到 reduce task 输入的过程,shuffle 是连接 map 和 reduce 的桥梁: shuffle 性能的高低直接影响了整个程序的性能和吞吐量,因为在 分布式 情况下,reduce task 需要跨节点去拉取其他节点上 map task 的结果,这需要消耗网络资源.内存 IO 和磁盘 IO: shuffle 可分为两部分:map 阶段的数据准备和 reduce 阶段的数据拷贝处理,一般 map 端的 shu…
1.spark是什么 快速.通用.可扩展的分布式计算引擎. 2. 弹性分布式数据集RDD RDD(Resilient Distributed Dataset),是Spark中最基本的数据抽象结构,表示一个不可变.可分区.里面元素可以并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. RDD的属性 一组分片(Partition),即数据集的基本组成单位.对于RD…
这是个老生常谈的话题,大家是不是看到这个文章标题就快吐了,本来想着手写一些有技术深度的东西,但是看到太多童鞋卡在入门的门槛上,所以还是打算总结一下入门经验.这种标题真的真的在哪里都可以看得到,度娘一搜就是几火车皮,打开一看都是千篇一律的“workcount”.“quickstart”,但是这些对于初学者来说还差的太多,这些东东真的只是spark的冰山一角,摸着这些石头过河的话,弯路太多.暗礁涌动,一个不留神就掉河里了.希望我这篇文章能让大家看到些不一样的地方.文章分五个部分,包括官网.blog(…