ZOJ.3551.Bloodsucker(期望DP)】的更多相关文章

题目链接 \(Description\) 有1个吸血鬼和n-1个人,每天有且只会有两个人/吸血鬼相遇,如果是人与吸血鬼相遇,那个人会有p的概率变成吸血鬼:否则什么也不发生.求n个都变成吸血鬼的期望天数. \(Solution\) 我还是写一下吧..期望题一般倒着递推. 设\(f[i]\)为当前有\(i\)个吸血鬼,要变成\(n\)个吸血鬼的期望天数.那么\(f[n]=0\),答案即\(f[1]\). 一天要么变一个要么不变,很好想到: \[f[i]=p_i(f_{i+1}+1)+(1-p_i)(…
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3551 题意:开始有N-1个人和一个吸血鬼, 每天有两个生物见面,当人遇到吸血鬼时有p的概率变成吸血鬼,求全部变成吸血鬼所需要的时间的期望~ 思路: 设dp[i] 为还有 i 个人时,有一人变成吸血鬼的期望时间, p[i]为还有 i 个人时,有人变成吸血鬼的概率, 那么p[i]= p*i(N-i)/(N*(N-1)/2)~  dp[i]=1/p[i]; 由 E(X)=…
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3822 Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends.…
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4530 dp[i]表示现在存在i个吸血鬼要达成目标(全为吸血鬼)天数的数学期望假如现在再增加一天,这一天可能会增加一个吸血鬼,p1*(dp[i+1]+1)表示接下来的一天增加了一个吸血鬼,所以为(dp[i+1]+1),还有一种可能就是没有增加吸血鬼,概率自然是(1-p1)dp[i]+1表示接下来的一天没有增加吸血鬼,但向后推移了一天因此dp[i]这个状态可以转移到dp[i…
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exa…
解题报告链接: http://www.cnblogs.com/183zyz/archive/2012/09/13/2683524.html 做法:设当有i个吸血鬼时变成n个吸血鬼的天数的数学期望为dp[i]. pi为人和吸血鬼相遇的概率,pi = i*(n-i)/cn2 . cn2表示从n个人中选两个人出来的选法,那么人和吸血鬼相遇的选法为i*(n-i).p为人变吸血鬼的概率. 则有dp[i] = p*pi*(dp[i+1]+1)+(1-p*pi)(dp[i+1]+1) 化为:dp[i] = d…
ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <cctype> #include <set> #include <vector> #inclu…
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种,转移一下即可. 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef double db; ; int n,s; db f[xn][xn]; in…
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a lar…
ZOJ Problem Set - 3822Domination(DP) problemCode=3822">题目链接 题目大意: 给你一个n * m的棋盘,每天都在棋盘上面放一颗棋子.直到这个棋盘上的每行每列都有至少有一颗棋子.求要用的天数的期望. 解题思路:         先求出不同摆法的棋盘的概率,然后在和天数相乘就是期望.         我们将棋盘划分为四个部分:当中一部分为每行没列都至少有一个棋子.         然后得出状态转移方程:         dp[x][y][k…
1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Discuss] Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一行输入两个数R,B,其值在0到5000之间 Output 在最优策略下平均能得到多少钱…
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 i ( 1≤ i≤n)个时同段上, 两节内容相同的课程同时在不同的地点进行, 其中, 牛牛预先被安排在教室 ci上课, 而另一节课程在教室 di进行. 在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的n节安排好的课程.如果学生想更换第i节课程的教室,则需要提出中情.若申请通过,学生…
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然…
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 515[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个…
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]=f[i-1]+2*g[i-1]+1,g[i]=g[i-1]+1 ③ s[i]=‘?’:f[i]=f[i-1]+g[i-1]+0.5,g[i]=(g[i-1]+1)/2 然后4318比上一个稍难一点,变形一下 (x+1)^3-x^3=3x^2+3x+1 x为之前的期望长度 递推式包含平方项,平方的期望…
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n或超出n期望掷色子次数 SOL: 期望DP还是显然的,从后往前推也是显然的——这个题目能比较好地理解为什么要从后往前推.概率DP每个状态都在当前已知的概率下推出——最基本事件的概率往往都是已知的,而期望不同,从头开始,头的期望步数是根本不可知的,一旦遇上不可行状态极难处理,而从后往前推,最后一个状态…
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i][j]表示已经发生了i种选择,j种状态. 那么由dp[n][m]这个时刻到最终时刻的期望是0. 而我们的起始时刻是dp[0][0]. 而dp[i][j]可以转移到四种情况, 1 dp[i][j]本身 2 dp[i+1][j] 3 dp[i][j+1] 4 dp[i+1][j+1] 那么dp[i][…
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exac…
一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都是安全的 dp[u][s] 为当前在u,走过的联通块为s的期望天数 那么走到剩下没有走过的连通块的概率是   (n-have)/(n-1),  那么平均需要的时间是  (n-1)/(n-have), 走到下一个没有走过的连通块的概率为cnt[i] / (n-have) 所以dp[u][s] = (n…
一直不明白为什么概率是正推,期望是逆推. 现在题目做多了,慢慢好像有点明白了 poj2096 收集bug,  有n个种类的bug,和s个子系统.  每找到一个bug需要一天. 要我我们求找到n个种类的bug,且在每个系统中都找到一个bug的期望天数 设dp[i][j] 为找到i个种类的bug和在j个系统中找到bug后,还需要的期望天数 那么dp[n][s] 肯定是0,而dp[0][0]是我们要求的. 这也就是为什么期望是要逆推. 还有一点就是这一状态的期望会等于   所有(下一状态的的期望*这一…
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们发现期望时间戳其实只需要考虑自己父亲下来(步数加一)&从兄弟回来两种可能. 设size[i]为i节点子树大小(包括自身) 对于兄弟的情况,i节点的一个兄弟有1/2的可能已经被遍历完毕了,也就是步数加size该兄弟. 于是设ans[i]为到达i点的期望值,则 ans[i]=ans[Father i]+…
[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $              X_2 + 2X_3 = 1$ $2X_1 + X_3 = 0$ 化为矩阵为:--->----->-----> 然后就可以通过最后一行直接求出$X_3 = ...$,将其带回第二行,算出$X_2$,同理算出$X_1$. 代码很好理解: inline void gauss(){ int…
[总览] [期望dp] 求解达到某一目标的期望花费:因为最终的花费无从知晓(不可能从$\infty$推起),所以期望dp需要倒序求解. 设$f[i][j]$表示在$(i, j)$这个状态实现目标的期望值(相当于是差距是多少). 首先$f[n][m] = 0$,在目标状态期望值为0.然后$f = (\sum f' × p) + w $,$f'$为上一状态(距离目标更近的那个,倒序),$p$为从$f$转移到$f'$的概率(则从$f'$转移回$f$的概率也为$p$),w为转移的花费. 最后输出初始位置…
题目背景 NOIP2016 提高组 Day1 T3 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n 节课程安排在 n 个时间段上.在第 i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 ci 上课,而另一节课程在教室 di 进行. 在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 n 节安排好的课程.如果学生想更换第 i 节课程的教室,则需要提出申请.若申请通过,学…
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod 1003\) 50% n=k 送分...从大到小选就行了...实际上送了80分... 这个期望DP没想到不应该啊 \(f[i]\)表示还有i步可以结束的期望步数 \[ f[i] = \frac{i}{n} f[i-1] + \frac{n-i}{n}f[i+1] +1 \\ f[i+1] = ...…
Time Limit: 1000 ms   Memory Limit: 256 MB Description  给定一个由且仅由字符 'H' , 'T' 构成的字符串$S$. 给定一个最初为空的字符串$T$ , 每次随机地在$T$的末尾添加 'H' 或者 'T' . 问当$S$为$T$的后缀时, 在末尾添加字符的期望次数. Input 输入只有一行, 一个字符串$S$. Output 输出只有一行, 一个数表示答案. 为了防止运算越界, 你只用将答案对$10^9+7$取模. Sample Inp…
期望\(DP\) 方法总结 这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新! 1. 递推式问题 对于无穷进行的操作期望步数问题,一般可用递推式解决. 对于一个问题\(ans[x]\), 我们可以考虑建立逻辑转移: \[ans[now] = Merge(\ \ Function(ans[now])\ ,\ Function(ans[other])\ \ )\] 那么我们进行移项后, \[ans[now]\ Delete\ Function(ans[now])\ \ =\ \ Fu…
B20J_1419_red is good_期望DP 题意:有R张红牌和B张黑牌,一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. 分析:期望DP. 状态描述:f[i][j]表示当前有i张红牌,j张黑牌平均能够获得的钱数. 转移:考虑当前翻开的是什么牌. f[i][j]=max{0,(f[i-1][j]+1)*i/(i+j)+(f[i][j-1]-1)*j/(i+j)}. 对最优策略的理解:如果当前获得钱为负数就没有必要转移了. 其他:1.题…
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 分析: 题可以转化为求每条边被通过次数的期望.每条边的期望等于两个端点被通过次数的期望乘上通过这条…
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P(B|A)*P(A)P(A) = min(ai,ai+1)/aiP(B|A) = 1/a(i+1)P(B) = min(ai,ai+1)/(ai*a(i+1))又因为期望的可加性,直接加起来统计答案 代码: #include <stdio.h> #include <string.h> #…