word2vec的原理(一)】的更多相关文章

word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous Bag-Of-Words,连续词袋模型)和Skip-Gram两种模型. 模型原理 语言模型的基本功能是判断一句话是否是自然语言, 从概率的角度来说就是计算一句话是自然语言的概率. 直观地讲"natural language"这个词组出现的概率要比"natural warship&q…
word2vec 是 Google 于 2013 年推出的一个用于获取词向量的开源工具包.我们在项目中多次使用到它,但囿于时间关系,一直没仔细探究其背后的原理. 网络上 <word2vec 中的数学原理详解> 有一系列的博文,对这个问题已经做了很好的阐述.作者十分用心,从最基础的预备知识.背景知识讲起,这样读者就不用到处找相关资料了. 这里,我就把其博文链接直接搬运过来: (一)目录和前言 (二)预备知识 (三)背景知识 (四)基于 Hierarchical Softmax 的模型 (五)基于…
由于word2vec有两种改进方法,一种是基于Hierarchical Softmax的,另一种是基于Negative Sampling的.本文关注于基于Hierarchical Softmax的改进方法,在下一篇讨论基于Negative Sampling的改进方法. 1. 基于Hierarchical Softmax的模型概述 我们先回顾下传统的神经网络词向量语言模型,里面一般有三层,输入层(词向量),隐藏层和输出层(softmax层).里面最大的问题在于从隐藏层到输出的softmax层的计算…
最近上了公司的新员工基础培训课,又对NLP重新产生的兴趣.NLP的第一步大家知道的就是不停的写正则,那个以前学的还可以就不看了.接着就是我们在把NLP的词料在传入神经网络之前的一个预处理,最经典的就是2013年google提出的那个word2vec算法,所以最近想再把这个算法给好好学习一下,然后实现一下. 1. 词向量基础 用词向量来表示词并不是word2vec的首创,在很久之前就出现了.最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置…
Word2vec是Google的Mikolov等人提出来的一种文本分布式表示的方法,这种方法是对神经网络语言模型的“瘦身”, 巧妙地运用层次softmax(hierarchical softmax )和负采样(Negative sampling )两种技巧,使得原本参数繁多.计算量巨大的神经网络语言模型变得容易计算. Word2vec概括地说是包含了两种模型和两种加速训练方法: (一)两种模型:CBOW(continuous bag-of-words)和Skip-Gram.CBOW的目标是通过上…
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究.在本篇文章中,尝试使用TensorFlow自行构建.训练出一个word2vec模型,以强化学习效果,加深理解. 一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量的大小.这会导致在语料较为丰富,词汇量较大的时候,向量的维度过长,进而产生一个相当大的稀疏矩阵,占用不少内存开销,降低机器运行速度.而word2vec则为这个问题提供了一种解决方案. word2vec是一个用来产…
关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据 数据处理参考这篇文章 模型训练: # -*- coding: utf-8-*- from gensim.models.word2vec import Word2Vec sentences = [['A1','A2'],['A1','A3','A2']] num=0 wit…
Word2Vec Tutorial - The Skip-Gram Model,Skip-Gram模型的实现原理:http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ Word2Vec 数学原理详解:http://suanfazu.com/t/word2vec-zhong-de-shu-xue-yuan-li-xiang-jie-duo-tu-wifixia-yue-du/178 Word2Vec是什么?…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
cbow和skip-gram都是在word2vec中用于将文本进行向量表示的实现方法,具体的算法实现细节可以去看word2vec的原理介绍文章.我们这里大体讲下两者的区别,尤其注意在使用当中的不同特点.   在cbow方法中,是用周围词预测中心词,从而利用中心词的预测结果情况,使用GradientDesent方法,不断的去调整周围词的向量.当训练完成之后,每个词都会作为中心词,把周围词的词向量进行了调整,这样也就获得了整个文本里面所有词的词向量.   要注意的是, cbow的对周围词的调整是统一…
(一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 时隔若干个月,又绕到了word2vec.关于word2vec的原理我就不叙述了,具体可见word2vec中的数学,写的非常好. 我后来自己用Python实现…
https://zhuanlan.zhihu.com/p/26306795 https://arxiv.org/pdf/1411.2738.pdf https://zhuanlan.zhihu.com/p/53194407 https://zhuanlan.zhihu.com/p/58805184   embedding入门到精通的paper,包括graph embedding Word2Vec算法原理: skip-gram: 用一个词语作为输入,来预测它周围的上下文 cbow: 拿一个词语的上…
Word2vec 很好的资料 Word2Vec-知其然知其所以然   https://www.zybuluo.com/Dounm/note/591752 Word2Vec数学原理讲解 http://www.cnblogs.com/peghoty/p/3857839.html…
摘自:http://blog.csdn.net/thriving_fcl/article/details/51404655 词的向量化与word2vec简介 word2vec最初是Tomas Mikolov发表的一篇文章[1],同时开源了相应的代码,作用是将所有词语投影到K维的向量空间,每个词语都可以用一个K维向量表示. 为什么要将词用向量来表示呢?这样可以给词语一个数学上的表示,使之可以适用于某些算法或数学模型.通常将词语表示成向量有如下两种方法. 一.one-hot 表示法 假如语料库里一共…
基于word2vec的文档向量模型的应用 word2vec的原理以及训练过程具体细节就不介绍了,推荐两篇文档:<word2vec parameter learning explained>.和<word2vec中的数学>. 在<word2vec中的数学>中谈到了训练语言模型的一些方法:比如n-gram和神经网络.在使用神经网络训练语言模型时得到的"副产物",就是word2vec词向量.基于神经网络训练语言模型有2种方案:cbow和skip-gram,…
再谈word2vec 标签: word2vec自然语言处理NLP深度学习语言模型 2014-05-28 17:17 16937人阅读 评论(7) 收藏 举报  分类: Felven在职场(86)    目录(?)[+]   之前写过一篇博文介绍如何使用word2vec,最近老板让我讲一讲word2vec,显然光讲word2vec的使用是不够的,更重要的是介绍原理.这篇文章就写写自己对于word2vec的一些理解吧.   背景介绍 Word2vec是google在2013年开源的一款将词表征为实数…
写在前面的话: 总结一下使用word2vec一年来的一些经验,因为自己在做的时候,很难在网上搜到word2vec的经验介绍,所以归纳出来,希望对读者有用. 这里不介绍word2vec的原理,因为原理介绍的资料网上很多 最后,由于本人知识有限,错误之处,还望指正.  1 word2vec 是word embedding 最好的工具吗? word2vec并非是效果最好的word embedding 工具.最容易看出的就是word2vec没有考虑语序,这里会有训练效果损失. 由于 word2vec 训…
前言 在前面我们大致介绍了什么是意图识别,把这个问题抽象出来其实是一个分类问题.在结构上面,我们使用LSTM来提取特征,Softmax来进行最后的多分类.由于语料的限制,我们目前仅考虑电台,音乐,问答类等三类的意图识别.更多种类的意图识别, 其实也是把更多种类的语料加入进来,修改softmax的分类数.最后的目标是在这三类的分类准备率能够达到90%. 我们将考虑使用 keras(严格意义上只能说是一个接口)来实现这个意图识别的工作. 整体流程 图一 意图分类训练流程 我们整体的流程如图所示,首先…
PaddlePaddle垃圾邮件处理实战(一) 背景介绍   在我们日常生活中,经常会受到各种垃圾邮件,譬如来自商家的广告.打折促销信息.澳门博彩邮件.理财推广信息等,一般来说邮件客户端都会设置一定的关键词屏蔽这种垃圾邮件,或者对邮件进行归类,但是总会有一些漏网之鱼.   不过,自己手动做一个垃圾邮件分类器也并不是什么难事.传统的机器学习算法通常会采用朴素贝叶斯.支持向量机等算法对垃圾邮件进行过滤,今天我们主要讲如何用PaddlePaddle手写一个垃圾邮件分类器.当然,在讲PaddlePadd…
楼主NLP初学者一名,有幸参加2018年CVTE中央研究院自然语言处理电话面试,问题总结如下: 1.详细的介绍自己的学术论文(感觉他们非常重视这块),会问你网络的具体构造,注意力机制如何计算以及为何你要这么做.最后会问你感觉你的创新点在哪里以及论文的级别. 2.HMM实现中文分词的原理和步骤. 3.BiLSTM-CRF实现命名实体识别的步骤:CRF是有向图还是无向图:CRF原理简单阐述. 4.Word2Vec的原理:词向量是网络的输出结果吗:词向量在网络的哪部分得到. 5.贝叶斯公式:先验概率和…
1.“句向量”简介word2vec提供了高质量的词向量,并在一些任务中表现良好. 关于word2vec的原理可以参考这几篇论文: https://arxiv.org/pdf/1310.4546.pdfhttps://arxiv.org/pdf/1301.3781.pdf关于如何使用第三方库gensim训练word2vec可以参考这篇博客: http://blog.csdn.net/john_xyz/article/details/54706807尽管word2vec提供了高质量的词汇向量,仍然没…
作者:NgShawn 链接:https://www.nowcoder.com/discuss/33737?type=2&order=3&pos=19&page=1 来源:牛客网   机器学习 Boost算法 CART(回归树用平方误差最小化准则,分类树用基尼指数最小化准则) GBDT与随机森林比较. GBDT(利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值,拟合一个回归树) KKT条件用哪些,完整描述 KNN(分类与回归) L1 与 L2 的区别以及如何解…
http://blog.csdn.net/weixin_36604953/article/details/78195462?locationNum=8&fps=1 文本分类需要CNN?No!fastText完美解决你的需求(前篇) fastText是个啥?简单一点说,就是一种可以得到和深度学习结果准确率相同,但是速度快出几个世纪的文本分类算法.这个算法类似与CBOW,可爱的读着是不是要问CBOW又是个什么鬼?莫急,听小编给你慢慢到来,一篇文章,让你了解word2vec的原理,CBOW.Skip-…
目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实际场景制定的规则. package ai.mole.test; import org.ansj.domain.Term; import org.ansj.splitWord.analysis.ToAnalysis; import org.nlpcn.commons.lang.tire.domain.…
一面: 1.算法题: 1 28数组中出现次数超过一半的数字 2 手写快排:八大排序算法总结(2) 2.项目介绍: 大多都是项目中涉及到的技术. TFIDF 的原理 word2vec的原理 3.算法原理: 1.GBDT的原理 2.GBDT中叶子节点与非叶子节点的区别 二面: 1.项目介绍: LSI的原理 2.算法原理: 1.LSTM的计算复杂度 2.推倒一下LR 3.GBDT的原理,抠得很细. 3.算法题: 1.29最小的K个数 2.1 蓄水池抽样算法 2.2 给定一个query 字符流,每个qu…
http://spaces.ac.cn/archives/4122/   关于词向量讲的很好 上边的形式表明,这是一个以2x6的one hot矩阵的为输入.中间层节点数为3的全连接神经网络层,但你看右边,不就相当于在$w_{ij}$这个矩阵中,取出第1.2行,这不是跟所谓的字向量的查表(从表中找出对应字的向量)是一样的吗?事实上,正是如此!这就是所谓的Embedding层,Embedding层就是以one hot为输入.中间层节点维数为字向量维数的全连接层(每一列对应一个中间层节点)!而这个全连…
一. 前言 自然语言处理(NLP)是机器学习,人工智能中的一个重要领域.文本表达是 NLP中的基础技术,文本分类则是 NLP 的重要应用.在 2016 年, Facebook Research 开源了名为 fasttext[1] 的文本表达和分类的计算库. fasttext 是基于文章 [2], [3], [4] 所提出算法的实现,针对变形词汇表达,线性分类优化提供了优秀的解决方案. 本文试图梳理 FastText 在文本表达和文本分类方面的工作,并进行实践. 二. 词嵌入 1. 背景介绍 词表…
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 原理 RNN.LSTM.GRU区别 LSTM防止梯度弥散和爆炸 引出word2vec 1.原理 在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward+Neural+Networks).而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身…
由于编辑器总是崩溃,我只能直接把代码贴上了. import numpy #first step import pandas as pd import numpy as np # Read data from files #这三行的目的就是读入文件,pd.read_csv()这个API里面参数还是比较多的,可以查阅官方文档 #人工标记过的训练数据 train = pd.read_csv( "data/labeledTrainData.tsv", header=0, delimiter=&…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…