吴裕雄 python神经网络(8)】的更多相关文章

import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skimage import color,data,transform,io #获取所有数据文件夹名称fileList = os.listdir("F:\\data\\flowers")trainDataList = []trianLabel = []testDataList = []testLa…
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skimage import color,data,transform,io #获取所有数据文件夹名称fileList = os.listdir("F:\\data\\flowers")trainDataList = []trianLabel = []testDataList = []testLa…
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers import Dense,Activation,Flatten,Dropout,Convolution2D,MaxPooling2Dfrom keras.utils import np_utilsfrom keras.optimizers import RMSpropfrom skimage import…
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # In[34]: import tensorflow as tfimport numpy as np train10_images = np.load('train10_images.npy')train10_labels = np.load('train10_labels.npy') y=tf.pl…
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflefrom keras.utils import np_utilsfrom skimage import color, data, transform, io trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\t…
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,io labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")allFruitsImageName = []for i in range(10): allFruitsImageName.append(…
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数 learning_rate= 0…
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data #设置输入参数 batch_size = 128 test_size = 256 # 初始化权值与定义网络结构,建构一个3个卷积层和3个池化层,一个全连接层和一个输出层的卷积神经网络 # 首先定义初始化权重函数 def init_weights(shape): return tf.Variabl…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): #构建权重: in_sizeXout_size大小的矩阵 weights = tf.Variable(tf.random_normal([in_size, out_size]))#生成随机数 #构建偏置: 1X…