基于spark实现表的join操作】的更多相关文章

1. 自连接 假设存在如下文件: [root@bluejoe0 ~]# cat categories.csv 1,生活用品,0 2,数码用品,1 3,手机,2 4,华为Mate7,3 每一行的格式为:类别ID,类别名称,父类ID 现在欲输出每个类别的父类别的名称,类似于SQL的自连接,注意到join的外键其实是父类ID. 首先生成"父类ID->子类ID,子类名称" val categories=sc.textFile("/root/categories.csv"…
hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的buffer中,通过stream最后面的表,直接从Reducer中读取已经缓冲的中间数据结果,与后面的大表进行连接时,只需要从buffer中读取缓存的key,与大表中的指定key进行连接,速度更快,也避免内存缓冲区溢出. SELECT a.val, b.val, c.val FROM a JOIN b…
在产品环境中,往往存在着大量的表连接情景,不管是inner join.outer join.cross join和full join(逻辑连接符号),在内部都会转化为物理连接(Physical Join),SQL Server共有三种物理连接:Nested Loop(嵌套循环),Merge Join(合并连接)和Hash Join(哈希连接).这三个物理连接的处理方式不同,分别应用在不同的场景中. 在同一时刻,表连接只能是两表(或者是数据集,也就是表的一部分)之间的连接,通常按照表处于Join操…
因为你的数据库中的查询就是重点  那么你的django提供的orm也是查询语句最重点 ,也提供的查询方法比较的多,下面我们学习下类似于MYSQL的连表(join)查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止. 这个查找不论是一对一,一对多,多对多都按照:正向查找按字段(关联字段),反向查询按表名(小写)来…
一. 数据准备 本文主要介绍Spark SQL的多表连接,需要预先准备测试数据.分别创建员工和部门的Datafame,并注册为临时视图,代码如下: val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json") empD…
一. 数据准备 本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据.分别创建员工和部门的 Datafame,并注册为临时视图,代码如下: val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json") e…
目录 使用场景 核心思路 代码演示 正常join 正常left join 广播:join 广播:left join 不适用场景 使用场景 大表join小表 只能广播小表 普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join.但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shu…
基于CDH5.x 下面使用eclipse 操作hive .使用java通过jdbc连接HIVESERVICE 创建表 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; /** * Created by Sebastian on 2016/10/25. * */ p…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数据分组的操作接口. 创建 Spark中有许多中创建键值对RDD的方式,其中包括 读取时直接返回键值对RDD 普通RDD转换成键值对RDD 在Scala中,可通过Map函数生成二元组 val listRDD = sc.parallelize(List(1,2,3,4,5)) val result =…