Machine Learning & Data Mining 资料整合】的更多相关文章

机器学习常见算法分类汇总 | 码农网 数据挖掘十大经典算法 | CSDN博客 (内含十个算法具体介绍) 支持向量机通俗导论(理解 SVM 的三层境界)| CSDN博客 (强烈推荐关注博主) 教你如何迅速秒杀掉:99% 的海量数据处理面试题 | CSDN博客 从 B 树.B+树.B* 树谈到 R 树 | CSDN博客 从头到尾彻底理解 KMP(2014年8月22日版) | CSDN博客 LinkedIn 开源的机器学习工具包:1 & 2 | 支持单机.Hadoop cluster 和 Spark…
http://archive.ics.uci.edu/ml/datasets.html 例如 3 分类 鸢尾花 数据集: http://archive.ics.uci.edu/ml/datasets/Iris # import sklearn dir(sklearn.datasets) from sklearn import datasetsiris = datasets.load_iris()iris.data iris.target iris…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on September 9, 2016 in XGBoost 0 0 0 0   Gradient boosting is one of the most powerful techniques for building predictive models. In this post you will d…
Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
原文 :https://medium.com/machine-learning-in-practice/roles-on-a-machine-learning-project-216903a6dc12 Machine learning is a technical process, but it starts and ends with people. The first step to structuring your machine learning project is to consid…
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比…
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…