python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩在用法上是一样的. concurrent.futures官方文档: https://docs.python.org/dev/library/concurrent.futures.html #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecu…
concurrent.futures 这个模块是异步调用的机制concurrent.futures 提交任务都是用submitfor + submit 多个任务的提交shutdown 是等效于Pool中的close+join,是指不允许再继续向池中增加任务,然后让父进程(线程)等待池中所有进程执行完所有任务. 针对计算密集的程序来说 不管是Pool的进程池还是ProcessPoolExecutor()的进程池,执行效率相当 ThreadPoolExecutor 的效率要差很多 所以 当计算密集时…
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当前进程中开启了多个线程 线程和进程的区别: 线程的开启 销毁 任务切换的时间开销小 在同一个进程中数据共享 能实现并发,但不能脱离进程 进程负责管理分配资源 线程负责执行代码 GIL锁 ——…
昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当前进程中开启了多个线程 线程和进程的区别: 线程的开启 销毁 任务切换的时间开销小 在同一个进程中数据共享 能实现并发,但不能脱离进程 进程负责管理分配资源 线程负责执行代码 GIL锁 —— 全局解释器锁同一时刻只能有一个线程访问CPU —— 线程锁 Cpython会受到GIL影响而 pypy和jp…
昨日内容回顾 线程 什么是线程? 线程是cpu调度的最小单位 进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当前进程中开启了多个线程 线程和进程的区别: 线程的开启 销毁 任务切换的时间开销小 在同一个进程中数据共享 能实现并发,但不能脱离进程 进程负责管理分配资源 线程负责执行代码 GIL锁 --  全局解释器锁 同一时刻只能有一个线程访问CPU -- 线程锁 Cpython会受到GIL影响 而pyp…
1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.concurrent.futures基本上就是在Python的threading和multiprocessing模块之上构建的抽象层,更易于使用.尽管这个抽象层简化了这些模块的使用,但是也降低了很多灵活性,所以如果你需要处理一些定制化的任务,concurrent.futures或许并不适合你. concu…
1,线程池代码示例:(注:进程池的话只要将以下代码中的ThreadPoolExecutor替换成ProcessPoolExecutor即可,这里不演示) import time from concurrent.futures import ThreadPoolExecutor def func(n): time.sleep(2) print(n) return n*n #max_workers 指定线程池多大 #1,创建线程池 tpool = ThreadPoolExecutor(max_wor…
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…
1.线程池的概念 由于python中的GIL导致每个进程一次只能运行一个线程,在I/O密集型的操作中可以开启多线程,但是在使用多线程处理任务时候,不是线程越多越好,因为在线程切换的时候,需要切换上下文环境,这样会导致CPU的大量开销,同时产生大量的切换时间浪费.为了解决这个问题,线程池概念被提出.预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池.python中的concurrent.futures模块为我们做了很好地封装,该模块为我们封装了线程池和进程池. 2.最佳线…
Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就绪,挂起,运行) ,***协程概念,yield模拟并发(有缺陷),Greenlet模块(手动切换),Gevent(协程并发) 一丶同步,异步 同步:    所谓同步就是一个任务需要依赖另一个任务时,只有被依赖任务执行完毕之后,依赖的任务才会完成.这是可靠的任务序列.要么都成功,要么失败,两个任务的状…
目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现协程 生成器的yield 可以实现保存状态(行不通) gevent模块实现 利用gevent在单线程下实现并发(协程) I/O 模型(只放了几张图) 阻塞I/O模型 非阻塞I/O模型 多路复用I/O模型 信号驱动I/O模型 异步I/O模型 进程池线程池的使用***** 无论是开线程还是开进程都会消耗…
8.6 GIL锁** Global interpreter Lock 全局解释器锁 实际就是一把解释器级的互斥锁 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython's memory…
Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 1. 死锁现象 2. 递归锁 3. 信号量 4. GIL全局解释器锁 1. 背景 2. 加锁的原因: 3. GIL与Lock锁的区别 4. 为什么GIL保证不了自己数据的安全? 5. 验证计算密集型.IO密集型的效率 6. 多线程实现socket通信 7. 进程池,线程…
1 模块简介 threading模块在Python1.5.2中首次引入,是低级thread模块的一个增强版.threading模块让线程使用起来更加容易,允许程序同一时间运行多个操作. 不过请注意,Python中的线程最好是与IO操作一起工作,比如从网络上下载资源或者从你的电脑中读取文件和目录.如果你需要处理一些CPU密集的任务,你最好是看看Python的multiprocessing模块.原因就是Python有GIL锁(解释器全局锁),使得所有的线程在主线程内运行.由于这个原因,当你使用线程执…
5.GIL vs 互斥锁(*****) 1.什么是GIL(Global Interpreter Lock) GIL是全局解释器锁,是加到解释器身上的,保护的就是解释器级别的数据 (比如垃圾回收的数据) 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2 为什么需要GIL python 中内存管理依赖于 GC(一段用于回收内存的代码) 也需要一个线程 除了你自己开的线程 系统还有一些内置线程 就算你的代码不会去竞争解释器 内置线程也可能会竞争 所以必须加上锁 3.GIL的影响 GI…
#提交任务的两种方式 #1.同步调用:提交完任务后,就在原地等待任务执行完毕,拿到结果,再执行下一行代码,导致程序是串行执行 一.提交任务的两种方式 1.同步调用:提交任务后,就在原地等待任务完毕,拿到结果,再执行下一行代码,导致程序串行执行 from concurrent.futures import ThreadPoolExecutor import time import random def produce(name): print('%s is producing' %name) ti…
第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10.2 多线程编程-threading 10.3 线程间通信-共享变量和Queue 10.4 线程同步-Lock.Rlock 10.5 线程同步-condition使用以及源码分析 10.6 线程同步-Semaphore使用及源码分析 10.7 ThreadPoolExecutor线程池 10.8 多…
1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: 2 logging模块使用 2.1 基本使用 配置logging基本的设…
转载地址:http://www.cnblogs.com/zhbzz2007/p/5943685.html#undefined Python标准模块--logging 1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从…
目录 基于requests模块的cookie,session和线程池爬取 基于requests模块的cookie操作 基于requests模块的代理操作 基于multiprocessing.dummy线程池的数据爬取 基于requests模块的cookie,session和线程池爬取 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三"人人网"个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的,例如: #!/usr/bin/env p…
原文:Python标准库09 当前进程信息 (部分os包) 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们在Linux的概念与体系,多次提及进程的重要性.Python的os包中有查询和修改进程信息的函数.学习Python的这些工具也有助于理解Linux体系. 进程信息 os包中相关函数如下: uname() 返回操作系统相关信息.类似于Linux上的uname命令. umask() 设置该进程创建文件时的权限mask.类…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 模块简介 Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员创建他们自定义的对象,可用于引入过程(也称为importer). 什么是imp? 另外有一个叫做imp的模块,它提供给Python import语句机制的接口.这个模块在Pyth…
[转]Python标准模块--importlib 作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 模块简介 Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员创建他们自定义的对象,可用于引入过程(也称为importer). 什么是imp? 另外有一个叫做imp的模块,它提供给Pytho…
线程 队列:先进先出 堆栈:后进先出 优先级:数字越小优先级越大,越先输出 import queue q = queue.Queue(3) # 先进先出-->队列 q.put('first') q.put(2) # q.put('third') # q.put(4) #由于没有人取走,就会卡主 q.put(4,block=False) #等同于q.get_nowait(), Ture 阻塞,Flase不阻塞,报异常满了 # # q.put(4,block=True,timeout=3) prin…
android 中的线程池 线程池的优点: 1 重用线程池中的线程,避免了线程的创建和销毁带来的性能开销 2 能有效的控制最大并发数,避免大量线程之间因为喜欢抢资源而导致阻塞 3 能够对线程进行简单的管理,提供定时执行以及指定间隔时间循环执行等 android 中的线程池源自java 中的Executor,Executor是一个接口,正真的实现是ThreadPoolExecutor. ThreadPoolExecutor 提供参数配置线程池. 下面是一个常用的构造方法: public Threa…
concurrent.futures模块提供了高度封装的异步调用接口,它内部有关的两个池 ThreadPoolExecutor:线程池,提供异步调用,其基础就是老版的Pool ProcessPoolExecutor: 进程池,提供异步调用 方法 ProcessPoolExecutor(n):n表示池里面存放多少个进程,之后的连接最大就是n的值 submit(fn,*args,**kwargs) 异步提交任务 map(func, *iterables, timeout=None, chunksiz…
一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使用线程池的方式, 在python3.2(2012年)之后加入了concurrent.futures模块(python3.1.5也有,但是python3.1.5发布时间晚于python3.2一年多),这个模块是python3中自带的模块,但是python2.7以上版本也可以安装使用. 下面分别介绍下各…
#!/usr/bin/env python # -*- coding: utf-8 -*- import concurrent.futures import time number_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] def evaluate_item(x): result_item = count(x) print("item " + str(x) + " result " + str(result_item)) def…
concurrent.futures是一个非常简单易用的库,主要用来实现多线程和多进程的异步并发. 本文主要对concurrent.futures库相关模块进行详解,并分别提供了详细的示例demo. 1. 模块安装 1) python 3.x中自带了concurrent.futures模块 2) python 2.7需要安装futures模块,使用命令pip install futures安装即可 pypi地址:https://pypi.python.org/pypi/futures/ 2. c…
Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. #!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time    def show(arg):     time.sleep(1)     print 'thread'+str(arg)    for i in range(10):     t = threading.Thread(target=show, args…