CF 633 E. Binary Table】的更多相关文章

题目链接 题目大意:给定一个棋盘,棋盘上有0或1,你可以将一整行取反或者一整列取反,要使得最后剩的1最少.\((1\le n\le 20,1\le m\le 100000)\). 一个容易想到的思路就是先枚举行是否取反,然后列就看1的个数是否大于\(\frac{n}{2}\)考虑是否取反. 我们设函数\(f(x)\)表示\(min(x_0,x_1)\),\(x\)在二进制状态下0或1最少的个数. 我们设行的取反状态为\(k\),每列的最终状态就是\(sta[i]\ xor\ k\),对答案的贡献…
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可以将一行或者一列的\(01\)全部翻转 回答表格中最少有多少个\(1\) 题解 发现\(n\)很小,\(m\)很大 状压是跑不掉了 如果我们确定翻转哪些行,那么答案唯一确定(贪心的选每一列中\(0/1\)的较小值) 相同的列显然可以合并, 把每一列按照\(01\)状压,记\(a[i]\)为状态为\(i\)的列…
CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) 翻转,即把 \(0\) 换为 \(1\) ,把 \(1\) 换为 \(0\) .请问经过若干次操作后,表格中最少有多少个 \(1\). \(1 \leq n \leq 20\) \(1 \leq m \leq 10^5\) 先说说 FWT 干嘛的吧 \(F_k = \sum_{i \oplus j…
C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a table consisting of n rows and m columns. Each cell of the table contains either 0 or 1. In one move, you are allowed to pick any row or any column and i…
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<vector> #include<cstdio> #include<algorithm> #define gc getchar() #define pc putchar #define int long long inline int read() { int x = 0,f = 1…
[CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le 10^5$ 题解:我也不知道叫啥了,说状压也不对,说fwt也不太对,就叫按位处理得了. 显然有$O(2^nm)$暴力,先枚举每行是否取反,然后枚举每列,如果0多就取反,否则不取. 但我们发现我们完全可以将本质相同的列一起处理,什么叫本质相同的列呢?假如我们对每行是否取反的状态为S,则所有$xor…
Binary Table (Hard Version) 题意 \(n*m(2\le n,m\le 100)\) 的01矩阵,每次可以选择一个宽度为2的子矩阵,将四个位置中的任意3个进行翻转,即0变1,1变0.要求构造操作次数小于 \(n*m\) 的方案,使得该矩阵最终变成一个全0矩阵. 分析 构造方法可能有很多种,只要能够满足题意即可. 从第一行开始到倒数第三行,逐列扫描,假设当前扫描的位置为 (i,j),且当前位置为1,那么执行操作一或者操作二.\(i\le n-2\) ,只扫描前 \(n-2…
CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\le 10^5\) 题解: 可以把每一列看作一个二进制数,这样得到\(m\)个二进制数,记为\(A\),翻转第\(i\)列就相当于把每个二进制数异或上\(1<<i\),由于\(n\)很小,所以枚举所有的翻转组合,一共\(2^n\)种,令\(d(x)\)表示最高位为\(n\)的二进制数中\(0\)和…
「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0/1\) 个数较小的数字即可(因为每一列也可以翻转).这样的时间复杂度是 \(O(m\cdot2^n)\). 但是显然这样过不了. 我们发现表格的具体行列对我们的答案是没有影响的.即我们只需要知道状态为 \(x\) 的行或者状态为 \(x\) 的列的个数即可.由于 \(n\le20\),这启发我们对…
用FWT优化计算. 首先发现行数很小,想到一个暴力的方法,就是以一个二进制位$0$表示这一行不翻转而二进制位$1$表示这一行翻转,然后$2^n$枚举出所有行的翻转情况,再$O(m)$计算所有的结果. 用$a_i$表示第$i$列的原来的情况,有计算式: $$ans_s = \sum_{i = 1}^{m}(a_i \oplus s) * min(bit_{a_i \oplus  s}, n - bit_{a_i \oplus s})$$ 这里的$bit_i$表示$i$的二进制表示中$1$的个数.…