原文地址:https://www.jianshu.com/p/5a896955abf0 2)基于迭代的方法直接学 相较于基于SVD的方法直接捕获所有共现值的做法,基于迭代的方法一次只捕获一个窗口内的词间共现值. 好的语言模型中,有意义的句子高概率,无意义的句子即使语法正确也低概率. 在得到输入词向量和输出词向量后如何得到最终词向量?常取输入词向量(word2vec).拼接.相加(GloVe)等. 主要有以下3种模型算法: word2vec GloVe fastText (三)word2vec 基…
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hierarchical Softmax ,使用霍夫曼树结构代替了传统的神经网络,可以提高模型训练的效率.但是如果基于Hierarchical Softmax的模型中所以词的位置是基于词频放置的霍夫曼树结构,词频越高的词在离根节点越近的叶子节点,词频越低的词在离根节点越远的叶子节点.也就是说当该模型在训…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/233 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
一.词向量基础(一)来源背景  word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.虽然源码是开源的,但是谷歌的代码库国内无法访问,                                因此本文的讲解word2vec原理以Github上的word2vec代码为准.   最早的词向量是使用one-hot编码表示的(就是有多少个词就有多少维度,每个词对应的位置是1, 其他位置是0),…
1. 词向量上的操作(Operations on word vectors) 因为词嵌入的训练是非常耗资源的,所以ML从业者通常 都是 选择加载训练好 的 词嵌入(Embedding)数据集.(不用自己训练啦~~~) 任务: 导入 预训练词向量,使用余弦相似性(cosine similarity)计算相似度 使用词嵌入来解决 "Man is to Woman as King is to __." 之类的 词语类比问题 修改词嵌入 来减少它们的性别歧视 import numpy as n…
上篇博文提到,原始的CBOW / Skip-gram模型虽然去掉了NPLM中的隐藏层从而减少了耗时,但由于输出层仍然是softmax(),所以实际上依然“impractical”.所以接下来就介绍一下如何对训练过程进行加速. paper中提出了两种方法,一种是Hierarchical Softmax,另一种是Negative Sampling. 本文简述了以下内容: CBOW / Skip-gram模型的加速策略(一):Hierarchical Softmax CBOW / Skip-gram模…
原文地址:https://www.jianshu.com/p/b2da4d94a122 一.概述 本文主要是从deep learning for nlp课程的讲义中学习.总结google word2vector的原理和词向量的训练方法.文中提到的模型结构和word2vector的代码实现并不一致,但是可以非常直观的理解其原理,对于新手学习有一定的帮助.(首次在简书写技术博客,理解错误之处,欢迎指正) 二.词向量及其历史 1. 词向量定义   词向量顾名思义,就是用一个向量的形式表示一个词.为什么…
最近在家听贪心学院的NLP直播课.都是比较基础的内容.放到博客上作为NLP 课程的简单的梳理. 本节课程主要讲解的是词向量和Elmo.核心是Elmo,词向量是基础知识点. Elmo 是2018年提出的论文 <Deep contextualized word representtations>,在这篇论文中提出了很重要的思想Elmo,Elmo 是一种基于特征的语言模型,用预训练的语言模型,生成更好的特征. Elmo是一种新型深度语境化词表征,可对词进行复杂特征(如句法和语义)和词在语言语境中的变…
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运行效率? 2.如何提高词向量的精度,或者说如何衡量词向量优劣程度? 3.词向量的功能性作用还有哪些值得开发? 4.关于语义中的歧义问题如何消除? 5.词向量从"词"往"短语"的跨越? 转载请注明出处以及作者(Matt),欢迎喜欢自然语言处理一起讨论~ ---------…