问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如: 解答: 评:这样的变换,表示成线性组合在求积分的时候就显得很有用,大学自主招生迟早会考察以上变换.…
我把自己演哭了... 心酸.jpg 写了很多个版本的,包括数学公式暴力,快速幂TLE等等,最后想到了优化快速幂里的乘法,因为会爆longlong,但是和别人优化的效率简直是千差万别...? 本题大意: 给定三个longlongint范围内的正整数a, b, c,求出a^b mod c 的结果并输出. 本题思路: 见代码吧. 下面贴出我的各种版本的代码... 参考代码: //这道题数据有点水,不明白为啥数据里1^0 mod 1 == 1 ?魔鬼... /* 数学公式 :: 超时版 #include…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
BigDecimal b1 = rs.getBigDecimal("binary_double_column"); System.out.println( "ceshi:" +b1.toPlainString());…
快速幂形式 public static int f(int a,int b,int c){ int ans =1; int base=a; while(b!=0){ if((b&1)!=0) ans=(ans*base)%c; base=(base*base)%c; } return ans; } 快速乘法幂(优化) 幂转换成乘法,乘法转化成加法 public static int f(int a,int b,int c){ int ans = 0; int base=a; while(b!=0…
hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 6217 Accepted Submission(s): 1902 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] *…
js将字符串中所有反斜杠\替换成正斜杠/ 区分正斜杠与反斜杠: 正斜杠:http://.http紧跟着的斜杠,离手输入最近的斜杠,shift中间斜杠.45度角斜杠.正斜杠不需要转义 反斜杠:回车与空格之间.程序表示时需要转义成\\. str.replace(/\\/,/); 1>要想定义字符串a\b\c需要这样写var str = "a\\b\\c"; 2>alert(str.replace(/\\/g,"/"));将a\b\c 修改为a/b/c var…
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩阵快速乘法 一.整数运算:(快速乘法.快速幂) 先说明一下基本的数学常识: (a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c 对于2进制,2n可用1后接n个0来表示.对于8进制,可用公式 i+3*j ==…
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分解为(a^2)*(a^2)...a:然后再分别算a^2:这样的计算量由O(n)一下变成 \(O(logn)\): 模板代码如下: ll pow(int a,int b) { if(b==0) return 1; ll res=1 % mod; while(b) { if(b&1) res=res*a…
先上一个demo代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Document</title> <style> html, body { margin: ; height: %; } canvas { display: block; } </style> </hea…