题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4455 https://loj.ac/problem/2091 题解 很不错的一道题.(不过在当时考场上应该是签到吧 有一种很显然是错的的树形 DP 方法: 令 \(dp[x][i]\) 表示树上 \(x\) 对于图上 \(i\) 这个点,然后转移的时候直接枚举 \(x\) 的孩子和 \(i\) 的孩子进行匹配. 这样显然会有很多重复配对(即树上的两个点配对图上同一个点)的.然后我就很快把这个…
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自己的想法吧 如果直接上树形DP的话,必须要保存当前子树对应了图上的点的集合才行,要不然做不到1对1.但这样复杂度就炸掉了至少需要\(3^n\)枚举子集 我们可以用容斥原理来弱化这个限制,使得允许多对1 \[ 树上n个点对应图上n个点的方案数\ = \\ \] \[ n个点对应\le n个点\ -\…
相当于给树上的每个点分配一个编号使父亲和儿子间都有连边. 于是可以考虑树形dp:设f[i][j][k]为i号点的编号为j,其子树中编号集合为k的方案数.转移显然.然而复杂度3n·n3左右,具体我也不知道是多少,但肯定跑不过. 如果状态有集合的话不管怎样底数都是3了,考虑能不能变成2.完全不能可以想到容斥. 于是在dp中去掉k这一维.那么dp变成n3的.但是dp显然会有问题,即会出现不同的点取了相同编号的情况.这也可以看做是有编号未被选择. 那么就可以容斥了.先算出编号在全集中选择的答案,然后减去…
4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 426  Solved: 255 Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但 通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树.小Y找到了这个饰品的…
4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 527  Solved: 317[Submit][Status][Discuss] Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但 通过这些细线,这颗小星星还是被串在一起,也就是这…
传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi,j​表示把iii对应成原图中的点jjj这棵子树的对应方案数. 然后转移就枚举儿子看能不能转,如果可以就更新当前答案. 但是这样会有多个树中的节点对应到同一个图中的节点上. 于是我们用2n2^n2n的时间去枚举可以对应的原图的点集合然后容斥即可. 代码: #include<bits/stdc++.h>…
OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<cmath> #include<queue>…
Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但 通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树.小Y找到了这个饰品的设 计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星.如果现在饰品中两颗小星星有细线相连, 那么要求对应的小星星原来的图纸上也有细线相连.小Y想知道有多少种…
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥,进一步拓展到多条反向边,就是考虑0条反向边的概率-考虑1条反向边的概率+考虑2条反向边的概率……容斥可以在dp中完成,即遇到反向边时分是否考虑它转移,若考虑乘上-1的系数. #include<bits/stdc++.h> using namespace std; #define ll long…
因为一大堆式子实在懒得写题解了.首先用prufer推出CF917D用到的结论,然后具体见前言不搭后语的注释. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<map> using namespace std; #define ll long…