人工网络生成程序,可在CSDN上免费下载 或者科学网这边也可以下载 参数 • n: number of vertices;• k: average degree;• maxk: maximum degree;• mu: mixing parameter (the higher the mixing parameter of a network is, the more difficult it is to reveal the communitystructure);• minc: minimu…
论文将搜索空间从整体网络转化为卷积单元(cell),再按照设定堆叠成新的网络家族NASNet.不仅降低了搜索的复杂度,从原来的28天缩小到4天,而且搜索出来的结构具有扩展性,在小模型和大模型场景下都能使用更少的参数量和计算量来超越人类设计的模型,达到SOTA   来源:[晓飞的算法工程笔记] 公众号 论文: Learning Transferable Architectures for Scalable Image Recognition 论文地址:https://arxiv.org/abs/1…
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门(1) —— 单层人工神经网络应用示人工神经网络入门(2) —— 人工神经基本概念介绍人工神经网络入门(3) —— 多层人工神经网络应用示例人工神经网络入门(4) —— AForge.Net简介 1 介绍这篇文章中,我们将介绍一个用C#实现的框架AForge,利用这个框架,您可以方便地操作人工网络,…
ANN核心数据结构: typedef struct  {     int input_n;                  /* number of input units */     int hidden_n;                 /* number of hidden units */     int output_n;                 /* number of output units */     double *input_units;         …
课程名称    内容    阶段一.人工智能基础 — 高等数学必知必会     1.数据分析    "a. 常数eb. 导数c. 梯度d. Taylore. gini系数f. 信息熵与组合数g. 梯度下降h. 牛顿法"    2.概率论    "a. 微积分与逼近论b. 极限.微分.积分基本概念c. 利用逼近的思想理解微分,利用积分的方式理解概率d. 概率论基础e. 古典模型f. 常见概率分布g. 大数定理和中心极限定理h. 协方差(矩阵)和相关系数i. 最大似然估计和最大后…
背景 现在的登录系统几乎都是带验证手段的,至于验证的手段也是五花八门,当然用的最多的还是验证码.不过纯粹验证码识已经是很落后的东西了,现在比较多见的是滑动验证,滑动拼图验证(这个还能往里面加广告).点击图片特定位置确认(同样能放广告),再或者谷歌的No-CAPTCHA.总之纯粹的验证码效果不好,成本也不如一众新型验证码,迟早是要被全部淘汰的,但现在仍然有很多地方在使用传统的图片验证码.所以提到自动模拟登录,验证码识别肯定也是需要进行研究的.  思路 由于我此前并没有接触过验证码识别的相关知识,所…
DeepWalk Background 使用机器学习的算法解决问题需要有大量的信息,但是现实世界中的网络中的信息往往比较少,这就导致传统机器学习算法不能在网络中广泛使用. (Ps: 传统机器学习分类问题是学习一种假设,将样本的属性映射到样本的类标签,但是现实网络中的结点属性信息往往比较少,所以传统机器学习方法不适用与网络.) Introduce deepWalk是网络表征学习的比较基本的算法,用于学习网络中顶点的向量表示(即学习图的结构特征即属性,并且属性个数为向量的维数),使得能够应用传统机器…
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI由大到小的顺序更新 得到ks值后,载计算一下节点邻居ks值和度值d的比值 (2)当出现次数最多的标签不止一个时,再计算一下标签重要度LI(label importance) 其实就是找到节点相同标签的那些令居计算一个合值,看着也不难啊 (3)最后这个算法使用的是异步传播 下面是我实现的代码 func…
pooling 是仿照人的视觉系统进行降维(降采样),用更高层的抽象表示图像特征,这一部分内容从Hubel&wiesel视觉神经研究到Fukushima提出,再到LeCun的LeNet5首次采用并使用BP进行求解,是一条线上的内容,原始推动力其实就是仿生,仿照真正的神经网络构建人工网络. 至于pooling为什么可以这样做,是因为:我们之所以决定使用卷积后的特征是因为图像具有一种"静态性"的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用.因此,为了描述大…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 顺便安利一下同组的大佬做的SNN教程:https://spikingflow.readthedocs.io/zh_CN/latest/Tutorials.html Abstract 本文在计算能力上对脉冲神经网络模型与基于McCulloch-Pitts神经元(阈值门)和基于sigmoidal门的其他神经网络模型加以比较.特别是,研究表明,就所需神经元数量而言,脉冲神经网络的计算能力比其他神经网络模型更强.这显示了一个具体的生物学相关函…
最近我们在客户端的驱动程序中引入了一些变更,这些变更会影响传入的请求在Apache Cassandra集群内的分发方式.   新的默认负载均衡算法即将随驱动程序推出,这些算法将有助于缩短长尾延迟,并提供更好的总体响应时间. 01 Cassandra中数据分区和数据复制的方式 Cassandra根据分区键(partition key)的值将数据分配至节点.每个分区键对应的分区有多个副本,从而确保可靠性和容错能力. 复制策略决定了要把这些副本放置在哪些节点.整个集群中的副本总数被称为"复制因子(re…
写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件要源代码,发完最后一封本以为又是无功而返,很意外的收到了秒回的邮件,邮件中附上了由 R 语言编写的实验代码.当时过于开心,因为终于有热心的作者回复了,以至于没有仔细考虑,想都没想对着满是警告的代码开始了 R 语言学习之旅.之后的几天陆陆续续的收到了其他作者的回复,实验代码多是使用 Python 构建…
如何将存储在磁盘上的邻接矩阵输入到 R 程序中,是进行社交网络分析的起点.在前面的章节中已经介绍了基本的数据结构以及代码结构,本章将会面对一个实质性问题,学习如何导入一个图以及计算图的一些属性. 图的文件表示 导入一个图 生成人工网络 图的基本分析 图的文件表示 在计算机中,最常见的两种表示图的基本结构是邻接矩阵和邻接表.以最简单的无权无向图为例,邻接矩阵中第 \(i\) 行第 \(j\) 列的元素 \(a_{ij}\) 如果等于 1,则表示顶点 \(i\) 和顶点 \(j\) 之间有边,即邻接…
原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参考相关书籍,我推荐<模糊数学教程>,国防工业出版社,讲的很全,而且很便宜(我买成7元钱). 人工神经网络的简介 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型.它是一种运算模型,由大量神经元和相互的连接组成,每个神经元代表一种特定的输出函数,称为激励函数(activati…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
深度神经网络繁多,各自的性能指标怎样? 实际应用中,在速度.内存.准确率等各种约束下,应该尝试哪些模型作为backbone? 有paper对各个网络模型进行了对比分析,形成了一个看待所有主要模型的完整视角,其分析结果可以在实践中提供指导和帮助. 这篇博客主要整合了其中3篇文章的结论,分别是 201605-An Analysis of Deep Neural Network Models for Practical Applications 201809-Analysis of deep neur…
Windows10 64位下安装TensorFlow谷歌人工智能系统已官方原生支持 GitHub - tensorflow/tensorflow: Computation using data flow graphs for scalable machine learninghttps://github.com/tensorflow/tensorflow TensorFlow官方文档中文版_TensorFlow中文教程http://wiki.jikexueyuan.com/project/ten…
from:https://blog.csdn.net/xuanwu_yan/article/details/53455260 背景 论文地址:Aggregated Residual Transformations for Deep Neural Networks 代码地址:GitHub 这篇文章在 arxiv 上的时间差不多是今年 cvpr 截稿日,我们就先理解为是投的 cvpr 2017 吧,作者包括熟悉的 rbg 和何凯明,转战 Facebook 之后代码都放在 Facebook 的主页里面…
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxiang Zhao, Xiang Zhang, Suhang Wang论文来源:2021, WSDM论文地址:download 论文代码:download 1 Introduction 节点分类受限与不同类的节点数量不平衡,本文提出过采样方法解决这个问题. 图中类不平衡的例子:   图中:每个蓝色节点…
摘要:AI Benchmark旨在衡量AI模型的性能和效能. 本文分享自华为云社区<KubeEdge SIG AI发布首个分布式协同AI Benchmark调研>,作者:KubeEdge SIG AI (成员:张扬,张子阳). 人工智能技术已经在我们生活中的方方面面为我们提供服务,尤其是在图像.视频.语音.推荐系统等方面带来了突破性成果.AI Benchmark旨在衡量AI模型的性能和效能.KubeEdge SIG AI成员张扬和张子阳博士就AI Benchmark的困难与挑战,以及新兴的边缘…
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知识图谱综述(2021.4) 摘要 1.简介 2.概述 3.知识表示学习(KRL) 3.1 表示空间 3.1.1 点空间 3.1.2 复向量空间 3.1.3 高斯分布 3.1.4 流形和群 3.2 评分函数 3.2.1 基于距离的评分函数 3.2.2 基于语义匹配的评分函数 3.3 编码模型 3.3.…
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
Python黑帽编程1.5  使用Wireshark练习网络协议分析 1.5.0.1  本系列教程说明 本系列教程,采用的大纲母本为<Understanding Network Hacks Attack and Defense with Python>一书,为了解决很多同学对英文书的恐惧,解决看书之后实战过程中遇到的问题而作.由于原书很多地方过于简略,笔者根据实际测试情况和最新的技术发展对内容做了大量的变更,当然最重要的是个人偏好.教程同时提供图文和视频教程两种方式,供不同喜好的同学选择. 1…
前面两篇博文我们已经简单了解了IP.端口.协议以及两种参考模型,我们现在重新从程序角度来看下这个参考模型. 如果我们从事的是Web网站开发,那么我们应该知道HTML是一种超文本标记语言 (Hyper Text Markup Language),而asp.php.jsp则是动态地生成HTML页面的技术,而HTTP是超文本传输协义,是基于WWW,HTML是超文本传输语言,是基于HTTP.因此我们开发时其实是在应用层进行开发. 如果我们从事的是网络编程则是在传输层和网际层进行开发. IP协议: 理解:…
本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类: 消息传递(管道.FIFO.消息队列) 同步(互斥量.条件变量.读写锁.文件和写记录锁.信号量) 共享内存(匿名的和具名的) 远程过程调用(Solaris门和Sun RPC) 但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的.其实TCP/IP协议族已经帮我们解决了这个问题,网络层的"ip地址&quo…
目       录 C#通讯(串口和网络)框架的设计与实现... 1 (SuperIO)- 框架的总体设计... 1 第二章           框架总体的设计... 2 2.1           宿主程序设计... 2 2.2           通讯机制设计... 7 2.2.1    串口通讯机制... 8 2.2.1.1   轮询模式... 9 2.2.2    网络通讯机制... 9 2.2.2.1   轮询模式... 9 2.2.2.2   并发模式... 10 2.2.2.3  …
1.下载fping.echoping.smokeping 链接:http://pan.baidu.com/s/1pL4HLYb 密码:fxe2 2.安装依赖包 yum install -y perl perl-Net-Telnet perl-Net-DNS perl-LDAP perl-libwww-perl perl-IO-Socket-SSL perl-Socket6 perl-Time-HiRes perl-ExtUtils-MakeMaker rrdtool rrdtool-perl c…
ipconfig是运行微软的Windows9x/NT/2000/XP/Vista操作系统的电脑上用来控制网络连接的一个命令行工具.它的主要功用,包括用来显示现时网络连接的设置(/all参数),或通过/release参数来释放取得的ip位置,和通过 /renew 来重新获取ip位置的分配.   在Win9x系统上,过去亦有一个GUI版本的winipcfg,但在Win2K之后即不再复见.后来,微软在他们的网页提供了wntipcfg供用户下载.此外,本命令其实脱胎自Unix的ifconfig.   一…
在这里介绍一次因为更改网站地址而引发服务器IO读取速度,网络流入流出速度暴涨10倍的解决经历. 环境:Ubuntu + Nginx + php-cgi + Wordpress 事情是这样的,现在网站使用的wordpress搭建的,网址为www.main.com(一个例子), 因为要启用新站点news.main.com,于是开启wordpress multi sites的功能. 开启MS功能过程中,受Wordpress MS 本身的限制,需要将之前的www.main.com更改为main.com,…