SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数…