传送门 其实是一个裸的最优比率生成树. 注意精度的控制就行了. 代码…
传送门 f[i][j]f[i][j]f[i][j]表示后iii个对答案贡献有jjj个a的方案数. 可以发现最后a,ba,ba,b的总个数一定是n∗(n−1)/2n*(n-1)/2n∗(n−1)/2 因此直接转移就行了. f[i][j]=f[i+1][j]+f[i+1][j−i]f[i][j]=f[i+1][j]+f[i+1][j-i]f[i][j]=f[i+1][j]+f[i+1][j−i] 解释:要么当前不选,要么选了就会有iii个aaa的贡献. 发现空间有点大?滚动数组优化 代码…
传送门 勉强算一道dp好题. 显然第kkk列和第k+nk+nk+n列放的棋子数是相同的. 因此只需要统计出前nnn列的选法数. 对于前mmm%nnn列,一共有(m−1)/n+1(m-1)/n+1(m−1)/n+1列跟它放的棋子数一定相同. 而对于第mmm%n+1n+1n+1~nnn列,一共有m/nm/nm/n列跟它放的棋子数一定相同. 因此枚举当前在第几列,一共放了几个棋子,然后用背包+快速幂优化转移就行了. 代码…
传送门 分组背包经典问题. 令f[i][j]f[i][j]f[i][j]表示前iii组花费为jjj的最优值. g[i][j]g[i][j]g[i][j]表示前iii组,第iii组已经支付了平台费用的最优值. 然后用ggg来转移f,gf,gf,g就行了. 代码…
传送门 考虑到模数等于7 * 13 * 17 * 19. 那么只需要维护四棵线段树求出每个数处理之后模7,13,17,197,13,17,197,13,17,19的值再用crtcrtcrt合并就行了. (因为太懒不想写crt改用枚举求解水过) 代码…
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p]表示把根换成ppp时整棵树的答案. 于是有g[v]=f[v]+min(g[p]−min(e[i].c,f[v]),e[i].c)g[v]=f[v]+min(g[p]-min(e[i].c,f[v]),e[i].c)g[v]=f[v]+min(g[p]−min(e[i].c,f[v]),e[i].c…
传送门 根据题目列出方程: fi=pi∗(fi−1+fi−2)+(1−pi)∗(fi+1+fi)f_i=p_i*(f_{i-1}+f_{i-2})+(1-p_i)*(f_{i+1}+f_i)fi​=pi​∗(fi−1​+fi−2​)+(1−pi​)∗(fi+1​+fi​) 但这会牵扯到iii之后的状态没法做. 因此考虑如果合成失败会变成一个等级为i−2i-2i−2的武器. 相当于消耗了一个等级为i−1i-1i−1的武器. 因此fi=pi∗(fi−1+fi−2)+(1−pi)∗(fi−1+fi)f…
传送门 纯粹是为了熟悉板子. 然后发现自己手生了足足写了差不多25min而且输出的时候因为没开long longWA了三次还不知所云 代码…
传送门 带修莫队板题. 直接按照经典写法做就行了. 代码…
传送门 换根dpdpdp傻逼题好像不好码啊. 考虑直接把每一个二进制位拆开处理. 先dfsdfsdfs出每个点到1的异或距离. 然后分类讨论一波: 如果一个点如果当前二进制位到根节点异或距离为1,那么对于当前二进制位到这个点距离为000的就是到根节点距离为111的,如果当前二进制位到这个点距离为111的就是到根节点距离为000的. 如果一个点如果当前二进制位到根节点异或距离为1,那么对于当前二进制位到这个点距离为000的就是到根节点距离为000的,如果当前二进制位到这个点距离为111的就是到根节…