BZOJ3688 折线统计 【dp + BIT】】的更多相关文章

题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][1])(k<i&&a[k]>a[i]) f[i][j][1]=sigma(f[k][j][1]+f[k][j-1][1])(k<i&&a[k]<a[i]) 很明显可以用树状数组优化. 代码: #include<cstdio> #include…
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升.下降. 现给定k,求满足f(S) = k的S集合个数. Input 第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标.所有点的坐标值都在[1, 100000]内…
传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点结尾,有j段单调区间,最后一段单调递增/递减的方案数. 然后有f[i][j][0]=∑f[i′][j][0]+∑f[i′′][j−1][1]f[i][j][0]=\sum f[i'][j][0]+\sum f[i''][j-1][1]f[i][j][0]=∑f[i′][j][0]+∑f[i′′][j…
题目链接 BZOJ3688 题解 将点排序 设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数 以上升为例 \[f[i][j][0] = \sum\limits_{k = 1}^{i - 1}\sum\limits_{y_k < y_i}f[k][j][0] + \sum\limits_{k = 1}^{i - 1}\sum\limits_{y_k < y_i}f[k][j - 1][1]\] \(bit\)优化成\(O(knlogn)\)…
折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 k 条的有多少个集合满足. 数量对 100007 取模. 思路 这道题我们考虑先看普通的 dp 怎么弄. 因为是按 \(x\) 坐标依次连边,那我们先把点按 \(x\) 坐标从小到大排序.那如果你在这里选一个集合,那在这里相连的就要连边. 那我们设 \(f_{i,j,k}\) 为前 \(i\) 个点…
折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升.下降. 现给定k,求满足f(S) = k的S集合个数. 输入 第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标.所有点的坐标值都在[1, 100000]…
本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种,它以“区间长度”作为DP的“阶段”,使用两个坐标(区间的左.右端点)描述每个维度.在区间DP中,一个状态由若干个比它更小且包含于它的区间所代表的状态转移而来,因此区间DP的决策往往就是划分区间的方法.区间DP的初态一般就由长度为1的“元区间”构成. 下面介绍一道经典题:石子合并 题目描述: 设有N堆石子排成一…
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\) ,且最后一段折线指向右上 \((↗)\) 的方案数. 记 f[i][j][1] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\) ,且最后一段折线指向右下 \((↘)\) 的方案数 . 状态转移方程:(我觉得挺显然的,感性理解一下就行了 \[ f[i…
[题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4 部分,每部分连续上升.下降.…
题目描述 给你一个长度为\(n\)的排列\(a\),每次要选择两个数,交换这两个数(这两个数可以相同).总共要交换\(k\)次. 最后要统计数列中有多少位置\(i\)满足\(\max_{j\leq i}a_i=a_i\).求前面这个东西的期望. \(n\leq 100,k\leq 80\) 题解 我们枚举每个数\(y\)每在个位置\(x\)的贡献.把其他数中大于\(y\)的看成\(1\),把其他数中小于\(y\)的看成\(0\),然后DP. 设\(f_{i,j,k}\)为交换了\(i\)次,\(…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数列…
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升.下降.   现给定k,求满足f(S) = k的S集合个数. Input 第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标.所有点的坐标值都在[1, 100000…
怎么说,数位DP还是我的噩梦啊,细节太恐怖了. 但是这章感觉又和之前的学的数位DP有差异?(应该是用DP预处理降低时间复杂度,好劲啊,不过以前都是记忆化搜索的应该不会差多少) poj3208 f[i][0~2]表示第i位,开头连续j个6的情况数,[3]表示魔鬼数的个数,这样可以方便得出区间内有多少魔鬼数,不停的试填到底即可. #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib…
AcWing Description Sol 看了很久也没有完全理解直接$DP$的做法,然后发现了记搜的做法,觉得好棒! 这里是超棒的数位$DP$的记搜做法总结   看完仿佛就觉得自己入门了,但是就像文中写的,还是要多做题才能真正弄明白鸭,还要加油(ง •_•)ง 然后这里是同一个人的本题题解 Code #include<iostream> #include<cstdio> #include<cstring> #define il inline #define Rg r…
Poj  AcWing Description Sol  这题长得就比较像数位$DP$叭. 所以先用$DP$进行预处理,再基于拼凑思想,通过"试填法"求出最终的答案. 设$F[i][3]$表示由$i$位数字构成的魔鬼数有多少个,$F[i][j](0<=j<=2)$表示由$i$位数字组成的,开头有$j$个$6$的非魔鬼数有多少个.注意,在计算$F[i][j]$时允许前导$0$的存在 $F[i][0]=9*(F[i-1][0]+F[i-1][1]+F[i-1][2])$ $F[…
题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). \(n\leq10^9,3\leq m\leq 8000且m是质数,1\leq x\leq m-1\). \(Solution\) 令\(f_{i,j}\)表示当前选了\(i\)个数,乘积模\(m\)为\(j\)的方案数,\(g_i=[i\in S]\). 转移就是,\[f_{i,a*b\%m}=…
效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/echarts.min.js"></script> <!--第二步:指定一个容器用来存放echarts,也就是一个设置宽高属性的 DOM节点 --> <div id="box" style="width: 1200px;height:…
题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有的数均不为质数 [1,m]中的质数可以线性筛出 则\(dp1[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in [0,p-1],k \in [0,m]\) \(dp2[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in […
转载自:http://blog.csdn.net/guognib/article/details/25472879 参考: http://www.cnblogs.com/jffifa/archive/2012/08/17/2644847.html kuangbin :http://www.cnblogs.com/kuangbin/category/476047.html http://blog.csdn.net/cmonkey_cfj/article/details/7798809 http:/…
echarts统计,心血来潮~~ 先看下效果图 看下代码 HTML页面  为ECharts准备一个Dom,宽高自定义 <div class="panel panel-info"> <div class="panel-body"> <div id="echart_show" style="height:500px"></div> </div> </div>…
类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计答案.而数位DP则认为可以换一种方法来枚举,找到对于一个数的上限,然后在这个限度内枚举每一个数位来统计答案 为了方便数位DP,题意可以转化求区间$[0, k]$的符合要求的数字总数,因此答案就是$ans(M)-ans(N-1)$ 首先我们可以预处理出dp数组:$dp[i][j]$表示以$j$开头的$i$位数的…
  Description 给出硬币面额及每种硬币的个数,求从1到m能凑出面额的个数. Input 多组数据,每组数据前两个数字为n,m.n表示硬币种类数,m为最大面额,之后前n个数为每种硬币的面额,后n个数为相应每种硬币的个数. (n<=100,m<=100000,面额<=100000,每种个数<=1000) Output 如题 Sample Input 3 10 1 2 4 2 1 1 2 5 1 4 2 1 0 0 Sample Output 8 4 Solution 这是典…
题目描述: Bad Luck Island time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output The Bad Luck Island is inhabited by three kinds of species: r rocks, s scissors and p papers. At some moments of time…
题意 : 有 n 种面额的硬币,给出各种面额硬币的数量和和面额数,求最多能搭配出几种不超过 m 的金额? 分析 : 这题可用多重背包来解,但这里不讨论这种做法. 如果之前有接触过背包DP的可以自然想到DP数组的定义 ==> dp[i][j] 表示使用前 i 种硬币是否可以凑成面额 j . 根据这样的定义,则一开始初始化 dp[0][0] = true 最后统计 dp[n][1 ~ m] 为 true 的数量即为答案 状态转移方程为 dp[i][j] |= dp[i-1][ j - k*val[i…
Online Judge:UVA12235 Label:思维题,状态定义,状压Dp 题面: 题目描述 有一个书架,上面放了n本书,从左往右的第i本书的高度为h[i].定义书架的混乱度为连续等高段的个数. 例如:{30,30,31,31,32}的混乱度为3:{30,32,32,31}的混乱度为3:{31,32,31,32,31}的混乱度为5. 现在你可以从中抽出至多k本书,然后将他们随意放回书架任意位置,求最终最小的混乱度. 对于100%的数据,N的范围[1,500],K的范围[1,100],书的…
01 背包: 01背包:在M件物品中取出若干件物品放到背包中,每件物品对应的体积v1,v2,v3,....对应的价值为w1,w2,w3,,,,,每件物品最多拿一件. 和很多DP题一样,对于每一个物品,都只有拿或者不拿这两种状态,不拿或者拿不动,dp[i][j]=dp[i-1][j],容量不变,而如果拿的话,为dp[i][j]=dp[i-1][j-w[i]]+v[i]:所以总的来说: dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]) 在二维的写法中,dp[…
Substring and Subsequence 题意 给出两个字符串s,t,求出有多少对s的子串和t的子序列相等. 思路 类似于最长公共子序列的dp数组. dp[i][j]表示s中以i为结尾的子串和t中前j个的子序列相等的个数. 转移的时候dp[i][j]=dp[i][j-1];. 如果s[i]==t[j]那么dp[i][j]+=dp[i-1][j-1]+1;,1是s[i]自身作为子串的情况. 最后统计dp[i][lent]的和 代码 #include<bits/stdc++.h> #de…
题目没有起点限制,且每个节点至少访问1次,最多访问2次,所以用三进制数表示节点的状态(选取情况). 因为三进制数的每一位是0或1或2,所以预处理z状态S的第j位的数是有必要的. 边界条件:dp[tri[i]][i]=0,表示只访问了i节点时,从i出发最小费用是0. 最后的答案就在所有满足条件的状态中统计dp[S][u]的最小值,枚举u(因为无起点限制). 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm&g…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…