AI - TensorFlow - 示例01:基本分类】的更多相关文章

基本分类 基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification Fashion MNIST数据集 经典 MNIST 数据集(常用作计算机视觉机器学习程序的“Hello, World”入门数据集)的简易替换 包含训练数据60000个,测试数据10000个,每个图片是28x28像素的灰度图像,涵盖10个类别 https://keras.io/datasets/#fashio…
影评文本分类 文本分类(Text classification):https://www.tensorflow.org/tutorials/keras/basic_text_classification主要步骤: 1.加载IMDB数据集 2.探索数据:了解数据格式.将整数转换为字词 3.准备数据 4.构建模型:隐藏单元.损失函数和优化器 5.创建验证集 6.训练模型 7.评估模型 8.可视化:创建准确率和损失随时间变化的图 IMDB数据集 包含来自互联网电影数据库的50000条影评文本 http…
基本回归 回归(Regression):https://www.tensorflow.org/tutorials/keras/basic_regression 主要步骤:数据部分 获取数据(Get the data) 清洗数据(Clean the data) 划分训练集和测试集(Split the data into train and test) 检查数据(Inspect the data) 分离标签(Split features from labels) 规范化数据(Normalize th…
保存和恢复模型(Save and restore models) 官网示例:https://www.tensorflow.org/tutorials/keras/save_and_restore_models 在训练期间保存检查点 在训练期间或训练结束时自动保存检查点.权重存储在检查点格式的文件集合中,这些文件仅包含经过训练的权重(采用二进制格式).可以使用经过训练的模型,而无需重新训练该模型,或从上次暂停的地方继续训练,以防训练过程中断 检查点回调用法:创建检查点回调,训练模型并将ModelC…
过拟合与欠拟合(Overfitting and underfitting) 官网示例:https://www.tensorflow.org/tutorials/keras/overfit_and_underfit主要步骤: 演示过拟合 - 创建基准模型 - 创建一个更小的模型 - 创建一个更大的模型 - 绘制训练损失和验证损失函数 策略 - 添加权重正则化 - 添加丢弃层 一些知识点 过拟合 在训练集上可以实现很高的准确率,但无法很好地泛化到测试数据(或之前未见过的数据).可能导致欠拟合的原因:…
本文地址:https://www.cnblogs.com/tujia/p/13862364.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
一个简单的用户登录系统 用户有账号密码,登录ip,登录时间 打开登录页面,输入用户名密码 登录日志,可以记录登陆的时间,登陆的ip 成功登陆了的话,就更新用户的最后登入时间和ip,同时记录一条登录记录 大致就是这样子 ----------------------- 创建数据库 navicat在localhost里面新建数据库 名字:sprinEg   编码utf-8 注意:字段名字使用navicat的时候不要有空格,否则会直接报错的 建立用户表 CREATE TABLE `t_user` ( `…
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551 - 写在前面 本科毕业设计终于告一段落了.特写博客记录做毕业设计(路面裂纹识别)期间的踩过的坑和收获.希望对你有用. 目前有: 1.Tensorflow&CNN:裂纹分类 2.Tensorflow&CNN:验证集预测与模型评价 3.PyQt5多个GUI界面设计 ​ 本篇讲CNN的训练与预测(以裂纹分类为例).任务目标:将裂纹图片数据集自…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归问题的预测结果是连续的,通常是用来预测一个值,如预测房价.未来的天气情况等等.一个比较常见的回归算法是线性回归算法(LR,Linear Regression).回归分析用在神经网络上,其最上层不需要加上softmax函数,而是直接对前一层累加即可.回归是对真实值的一种逼近预测. 分类问题的预测结果是…
本文主要介绍了如何使用TensorFlow环境运行一个最基本的图像分类器(Win10系统).源码地址https://github.com/sourcedexter/tfClassifier/tree/master/image_classification (这个大神好像改名了,原来叫akshaypai来着) 一.基础概念介绍 1.物体分类的思想 物体分类,也就是训练系统识别各个物体,如猫咪.狗狗.汽车等.TensorFlow是谷歌开发出的人工智能学习系统,相当于我们的运行环境. 2.神经网络与I…
01 - 基本的神经网络结构 输入端--->神经网络(黑盒)--->输出端 输入层:负责接收信息 隐藏层:对输入信息的加工处理 输出层:计算机对这个输入信息的认知 每一层点开都有它相应的内容,函数和功能.一般来说, 神经网络(Neural Network)是一连串神经层所组成的把输入进行加工再输出的系统. 神经网络的加工处理: 特征(features)--->神经网络层加工--->代表特征(feature representation)--->神经网络层再次加工--->…
本次使用了tensorflow高级API,在规范化网络编程做出了尝试. 第一步:准备好需要的库 tensorflow-gpu  1.8.0 opencv-python     3.3.1 numpy skimage tqdm 第二步:准备数据集: https://www.kaggle.com/c/dogs-vs-cats 我们使用了kaggle的猫狗大战数据集 我们可以看到数据集中,文件名使用了  ‘类.编号.文件类型 ’ 的标注 为了通用以及方便起见,我们对该数据集进行分文件夹放置: 下面是分…
#include<stdio.h> #include<string.h> #define max(x,y) x>y?x:y struct apple { int c; int w; }app[1001]; int main() { int i,n,v,j; while(scanf("%d%d",&n,&v)&&(n||v)) { int sum[1001]={0}; for(i=0;i<n;++i) scanf(&qu…
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算…
过拟合 过拟合(overfitting,过度学习,过度拟合): 过度准确地拟合了历史数据(精确的区分了所有的训练数据),而对新数据适应性较差,预测时会有很大误差. 过拟合是机器学习中常见的问题,解决方法主要有下面几种: 1. 增加数据量 大部分过拟合产生的原因是因为数据量太少. 2. 运用正则化 例如L1.L2 regularization等等,适用于大多数的机器学习,包括神经网络. 3. Dropout 专门用在神经网络的正则化的方法. Dropout regularization是指在深度学…
TensorBoard TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题. 可视化学习:https://www.tensorflow.org/guide/summaries_and_tensorboard 图的直观展示:https://www.tensorflow.org/guide/graph_viz 直方图信息中心:https://www.tensorflow.org/guide/tensorboard_histogr…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 基于二元分类和PCA的信用卡欺诈检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 更新至0.7 两个控制台应用程序 .csv 文件 欺诈检测 二元分类 Fa…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 用户评论的情绪分析 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API README.md 已更新 控制台应用程序 .tsv 文件 情绪分析 二元分类 线性分类 在…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 垃圾短信检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 可能需要更新项目结构以匹配模板 控制台应用程序 .tsv 文件 垃圾信息检测 二元分类 SDCA(…
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足:   任意x  p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化…
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰减(weight decay). 一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制).L1正则化和L2正则化的说明如下: L1正则化是指权值向量ww中||w||1 L2正则化是指权值向量ww中 关于二者如何解决机器学习中过拟合问题,可以参考如下链接: https:/…
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi…
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howdy\' 或 5 1阶张量:向量 (vector)或矢量,也就是一维数组(一组有序排列的数),例如,[2, 3, 5, 7, 11] 或 [5] 2阶张量:矩阵 (matrix),也就是二维数组(有序排列的向量),例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]] 3阶张量:三维…
Hello world # coding=utf-8 import tensorflow as tf import os os.environ[' try: tf.contrib.eager.enable_eager_execution() print("TF imported with eager execution!") except ValueError: print("TF already imported with eager execution!") t…
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时间轴上慢慢展开,有点类似我们大脑认识事物时会有相关的短期记忆. 这次我们使用RNN来识别手写数字. 首先导入数据并定义各种RNN的参数: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat…
MNIST 数据 train-images-idx3-ubyte.gz:训练集图片 train-labels-idx1-ubyte.gz:训练集图片类别 t10k-images-idx3-ubyte.gz:测试集图片 t10k-labels-idx1-ubyte.gz:测试集图片类别 训练 # 加载训练集和测试集数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist =…
tensorflow模型可以利用tf.train.Saver类保存成文件.一个模型包含下面四个文件. meta文件 存储计算图的protobuf. data-00000-of-00001文件和index文件 存储权值和偏置的二进制文件. checkpoint文件 存储模型checkpoint信息的文本文件.…