[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C 会产生 \(W_k\)的愉悦度. 求对于所有可能的染色方案, 他能获得的愉悦度的和.答案对 1004535809 取模 分析 显然颜色数量不超过\(tot=\min(m,\frac{n}{S})\) 我们需要求出现了\(S\)次的颜色有\(i\)种的方案数.这个东西不太好求,考虑容斥,求出现了\(S…
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i]\)的贡献 \[\sum_{k=0}^{lim}W[k]C_M^kC_N^{kS}\frac{(kS)!}{(S!)^k}\times Others\] \(Others\)是其他的东西,先考虑前面这堆东西的意义. 我们枚举恰好出现了\(S\)次的颜色个数\(k\),那么,选定这些颜色的方案数 首…
题目分析: 一开始以为是直接用指数型生成函数,后来发现复杂度不对,想了一下容斥的方法. 对于有$i$种颜色恰好出现$s$次的情况,利用容斥原理得到方案数为 $$\binom{m}{i}\frac{P_{is}^{n}}{(s!)^i}(\sum_{j=0}^{m-i}(-1)^j\binom{m-i}{j}\frac{P_{js}^{n-is}}{(s!)^j}(m-i-j)^{n-is-js})$$ 值得注意的是$n-is-js<0$的时候,后面的式子直接等于$0$,特判一下就行了. 那么答案…
题面 传送门 思路 这道题的核心在于"恰好有$k$种颜色占了恰好$s$个格子" 这些"恰好",引导我们去思考,怎么求出总的方案数呢? 分开考虑 考虑把恰好有$s$个格子的颜色,和不是$s$个颜色的格子分开来考虑 那么,显然答案可以用这样的一个式子表示: 令$lim=min(\lfloor\frac ns\rfloor,m)$,那么: $ans=\sum_{i=0}^{lim}w_iC_m^iC_n^{is}\frac{(is)!}{(s!)^i}g(m-i,n-is…
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!} \] \(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案 然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) .推导在下下面. 最后的答案是\(\sum w_i g(i)\) 推导: 显然颜色种类不会超过\(L=\lfloo…
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times s}}{(m-K)!\times (s!)^K}\times C(m,K)$ 然后二项式反演一下,得到恰好的数量:$ans_i=\sum\limits_{j=i}^n (-1)^{j-i}\times a_i\times C(j,i)$ 然后展开一下就可以得到两个多项式:$A_i=\frac{m!…
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<set> #include<map> #include<iostream> us…
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可…
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色至少放\(S\)种 有\(m\)种颜色,那么要乘上\(C_m^i\). 然后这\(n\)个位置分为\(i+1\)个部分:被钦定的\(i\)种颜色,每个\(S\)个:剩下\(m-i\)种颜色,一共\(n-iS\)种颜色,可以看作可重的全排列数,那么就有\(\frac{n!}{…
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为方案数 mod 1004535809. 样例输入 3 样例输出 4 题解 容斥原理+NTT+多项式求逆 设 $f_i$ 表示 $i$ 个点的简单无向连通图的数目,$g_i$ 表示 $i$ 个点的简单无向图的数目. 根据定义得 $g_i=2^{\frac{n(n-1}2}$ . 对于 $f_i$ ,考虑容斥…