PyTorch官方中文文档:torch.nn】的更多相关文章

torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法.…
PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch torch.Tensor torch.Storage torch.nn torch.nn.functional torch.nn.init torch.optim torch.autograd torch.multiprocessing torch.legacy torch.cuda torch.uti…
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor 参数: tensor:一个n维的torch.Tensor val:用于填满tensor的值 举例: w = torch.empty(,) nn.init.constant_(w, 0.3) 返回: tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000], […
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA GPU上进行张量运算(计算能力>=2.0). http://www.aibbt.com/a/pytorch/ 张量 Tensors torch.is_tensor[source] torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True 参数: obj (Ob…
torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 如何使用optimizer 为了使用torch.optim,你需要构建一个optimizer对象.这个对象能够保持当前参数状态并基于计算得到的梯度进行参数更新. 构建 为了构建一个Optimizer,你需要给它一个包含了需要优化的参数(必须都是Variable对象)的iterable.然后,你可以设置optimizer的参数选项,比如学…
torch.Tensor torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU tensor GPU tensor 32-bit floating point torch.FloatTensor torch.cuda.FloatTensor 64-bit floating point torch.DoubleTensor torch.cuda.DoubleTensor 16-bit…
自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有两个标志:requires_grad和volatile.它们都允许从梯度计算中精细地排除子图,并可以提高效率. 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户 requires_grad 如果有一个单一的输入操作需要梯度,它的输出也需要梯度.相反,只有所有输入都不需要梯度…
整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm  百度盘下载:ReactNative0.21中文文档 来源:ReactNative中文社区 快速入门 开始使用React Native 在Linux上使用React Native 安卓环境配置 Linux和Windows支持 新手引导 使用指南 样式 图片 手势响应系统 动画 无障碍功能 直接操作 调试 自动化测试 JavaScript环境 导航器对比 已知…