恐怖的奴隶主(bob)】的更多相关文章

题目 试题3:恐怖的奴隶主(bob) 源代码:bob.cpp 输入文件:bob.in 输出文件:bob.out 时间限制:1s 空间限制:512MB 题目描述 小L热衷于undercards. 在undercards中,有四个格子.每个格子要么是空的,要么住着一只BigBob. 每个BigBob有一个不超过k的血量:血量减到0视为死亡.那个格子随即空 出. 当一只BigBob受到伤害后,假如它没有死亡且剩余血量为t,它会从左数第 一个空格处召唤一只血量为a[t]的BigBob:若没有空格,则不会…
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\)次攻击,还剩下的\(1,2,3\)血的奴隶主个数为\(a,b,c\)的概率,每次考虑打到了哪里,做一个转移. 这样子,状态数就是把不超过\(8\)个东西分配到\(3\)个集合中,状态有\(165\)种,再加一个状态记录糊脸上的期望,也就是\(166\)个状态. 直接矩乘优化,那么单次的复杂度就是\(…
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Count me in!" 要打架了,算我一个. "Everyone, get in here!" 所有人,都过来! 小Y是一个喜欢玩游戏的OIer.一天,她正在玩一款游戏,要打一个Boss. 虽然这个Boss有 1010010^{100}10​100​​ 点生命值,但它只带了一个随…
题目描述 小L热衷于undercards. 在undercards中,有四个格子.每个格子要么是空的,要么住着一只BigBob. 每个BigBob有一个不超过k的血量:血量减到0视为死亡.那个格子随即空出.当一只BigBob受到伤害后,假如它没有死亡且剩余血量为t,它会从左数第 一个空格处召唤一只血量为a[t]的BigBob:若没有空格,则不会召唤.法术R定义为:从左往右,对每个BigBob造成一点伤害:假如有BigBob死 亡,重复上述效果.聪明的小L发现,在某些情况下,当他发动法术R时,游戏…
题面在这里 题意 有一个\(Boss\)和他血量为\(m\)的随从奴隶主,每当奴隶主受到攻击且不死,并且\(Boss\)的随从个数\(<k\)时,就会新召唤一个血量为\(m\)的奴隶主.每次攻击\(Boss\)和每个奴隶主的概率是相同的,求\(n\)步后期望对\(Boss\)造成的伤害. \(T\le1000,n\le10^{18},m\le3,k\le8\) sol --- 看到\(m<=3,k<=8\)的良心数据肯定是状压啦 通过暴搜可以得出状态最多只会有\(164\)种 并且两个状…
题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入第一行包含三个正整数 T,m,k ,T 表示询问组数,m,k 的含义见题目描述. 接下来 T 行,每行包含一个正整数 n ,表示询问进行 n 次攻击后扣减Boss的生命值点数的期望. 输出 输出共 T 行,对于每个询问输出一行一个非负整数,表示该询问的答案对 998244353 取模的结果.…
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都是固定的方式 所以可以预处理转移矩阵用矩阵快速幂进行优化 但是如果在计算的时候暴力\(状态^3\)进行转移会TLE 但是注意到在这个时候有用的状态其实只有一个向量 所以就预处理倍增然后用向量乘矩阵来优化到单次\(logn状态^2\)就可以了 有点卡常 //Author: dream_maker #i…
传送门 uoj上的数据太毒了--也可能是我人傻常数大的缘故-- 三种血量的奴隶主加起来不超过\(8\)个,可以枚举每种血量的奴隶主个数,那么总的状态数只有\(165\)种,设\(dp_{t,i,j,k}\)表示\(t\)时刻的时候\(i\)个一血奴隶主,\(j\)个二血奴隶主,\(k\)个三血奴隶主的概率,那么转移很明显 if(A)dp[i][A][B][C]+=dp[i-1][A-1][B][C]*A/tot; if(B)dp[i][A][B][C]+=dp[i-1][A+1][B-1][C+…
题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}(f(i+1,s')+0/1)\),num为奴隶主个数,当攻击boss时后面的贡献就是1,否则是0,s可以用一个m位k+1进制数来表示(代表血量为1,2,3的奴隶主个数). 然后处理出s的转移需要哪些状态(总状态数为\(tot=C_{10}^2+C_9^2+...+C_2^2=165\)),那么可以矩乘优化…
题意 题目链接 Sol 首先不难想到一种暴力dp,设\(f[i][a][b][c]\)表示还有\(i\)轮没打,场上有\(a\)个1血,\(b\)个2血,\(c\)个三血 发现状态数只有\(s = 166\)个,复杂度为\(O(ns)\) 矩乘优化一下复杂度为\(O(s^3 logn T)\),还是过不去. 因为每次询问都是独立的,那么可以预处理出\(2^i\)的转移矩阵,回答询问只需要拿一个行向量去乘log个矩阵 构造矩阵的时候可以加一个列向量表示期望 #include<bits/stdc++…