基于英伟达Jetson TX1的GPU处理平台】的更多相关文章

基于英伟达Jetson TX1 GPU的HDMI图像输入的深度学习套件 [309] 本平台基于英伟达的Jetson TX1视觉计算的全功能开发板,配合本公司研发的HDMI输入图像采集板:Jetson TX1集合64位ARM A57 CPU与1 TFLOP/s 256核Maxwell GPU处理器,并具备4 GB LPDDR4 | 25.6 GB/s内存,16 GB eMMC存储:HDMI采集板使用Micro HDMI接口作为输入接口,并通过芯片TC358840XBG完成从HDMI到MIPI CS…
谷歌出品的Colab笔记本,机器学习界薅羊毛神器,如今又有了新福利: 连英伟达最新一代机器学习GPU:Tesla T4都能免费蹭,穷苦羊毛党也顿时高端了起来. 英伟达的Tesla T4,是去年秋天才发布的新款GPU,专为AI推理任务进行了优化.它基于最新图灵架构,半精度浮点运算(FP16)峰值性能65 TFlops,4位整数运算(INT4)峰值性能260 TOPS.包含2560个CUDA核心,320个图灵张量核心,支持多精度推理. 谷歌云就是它的第一个大客户,2019年1月就用上了.GCP(Go…
英伟达GPU  嵌入式开发平台 1.         JETSON TX1 开发者组件 JETSON TX1 开发者组件是视觉计算的全功能 开发平台,旨在让您能够快速地安装和运行. 该组件带有 Linux 操作系统环境的存储,支持许多常见的 API,支持由 NVIDIA 完成的开发工具链.主板还设有诸多标准硬件接口,使其成为了高度灵活和可扩展的平台.这让它十分适合那些需要极高计算性能和极低功耗的应用. 2.         Jetson TX1模块 Jetson TX1 是全球首款模块化超级计算…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…
英伟达TRTTorch PyTorch JIT的提前(AOT)编译Ahead of Time (AOT) compiling for PyTorch JIT TRTorch是PyTorch / TorchScript的编译器,通过NVIDIA针对NVIDIA GPU的TensorRT深度学习优化器和运行时runtime.与PyTorch的即时(JIT)编译器不同,TRTorch是一种提前(AOT)编译器,这意味着在部署TorchScript代码之前,需要执行显式的编译步骤,以TensorRT引擎…
2006年,机器学习界泰斗Hinton,在Science上发表了一篇使用深度神经网络进行维数约简的论文 ,自此,神经网络再次走进人们的视野,进而引发了一场深度学习革命.深度学习之所以如此受关注,是因为它在诸如图像分类.目标检测与识别.目标跟踪.语音识别.游戏(AlphaGo)等多个领域取得了相当优秀的成绩,掀起了又一波人工只能浪潮.深度学习技术逐渐成为机器学习领域的前沿技术,近年来得到了突飞猛进的发展,这得益于机器学习技术的进步以及计算设备性能的提升.英伟达公司研发的图形处理器(Graphics…
硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenCL 和 SDK 的封装 硬件加速 硬件加速的学术名称是 GPGPU(General-purpose computing on graphicsprocessing units),中文名称是通用图形处理器.最基本的思想是使用 GPU 的运算能力完成原本需要 CPU 来进行的运算. 并行计算 GPU 是…
摘要: 首届云原生计算国际会议(KubeCon + CloudNativeCon,China,2018)在上海举办,弹性计算研究员伯瑜介绍了基于虚拟化.容器化编排技术的云计算操作系统PouchContainer.PouchContainer是类似于CNCF Kubernetes项目的容器管理平台,支撑快速部署和弹性伸缩,可能会改变软件行业开发.测试.部署和应用的模式. [最新动态] 1.首届云原生计算国际会议上,弹性计算研究员伯瑜介绍了基于虚拟化.容器化编排技术的云计算操作系统PouchCont…
前言 本文讲解如何在VS 2010开发平台中搭建CUDA开发环境. 当前配置: 系统:WIN7 64位 开发平台:VS 2010 显卡:英伟达G卡 CUDA版本:6.0 若配置不同,请谨慎参考本文. 第一步:下载CUDA 点击这里下载 cuda最新版.得到类似: cuda_6.0.37_winvista_win7_win8.1_general_64.exe 类型的安装包. 第二步:设置安装路径 运行安装程序,弹出安装过程中转文件路径设定框: 这个路径随便填无所谓,安装完后就会自动删除的,我就直接…
为了了解,上来先看几篇中文博客进行简单了解: 如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?(较为优秀的文章) 使用NCCL进行NVIDIA GPU卡之间的通信(GPU卡通信模式测试) nvidia-nccl 学习笔记 (主要是一些接口介绍) https://developer.nvidia.com/nccl (官方网站) https://github.com/NVIDIA/nccl (官方仓库) https://www.cnblogs.com/xuyaowen/p/het…