1. 概率 1.1 定义:概率(Probability):对一件事情发生的可能性的衡量. 1.2 范围:0 <= P <= 1 1.3 计算方法: 1.3.1 根据个人置信 1.3.2 根据历史数据 1.3.3 根据模拟数据 1.4 条件概率: 2. Logistic Regression(逻辑回归) 2.1 列子:模拟癌症肿瘤是良性还是恶性 h(x) > 0.5 h(x) > 0.2 2.2 基本模型 测试数据为: 要学习的参数为: 向量表示: 由于y取值在[0,1]之间,所有需…
Logistic Regression 的前世今生(理论篇) 本博客仅为作者记录笔记之用,不免有非常多细节不正确之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如需转载,请附上本文链接,不甚感激! http://blog.csdn.net/cyh_24/article/details/50359055 写这篇博客的动力是源于看到了以下这篇微博: 我在看到这篇微博的时候大为触动,由于,如果是rickjin来面试我.我想我会死的非常慘,由于他问的问题我基本都回答不上来.…
Logistic回归公式推导和代码实现 1,引言 logistic回归是机器学习中最常用最经典的分类方法之一,有人称之为逻辑回归或者逻辑斯蒂回归.虽然他称为回归模型,但是却处理的是分类问题,这主要是因为它的本质是一个线性模型加上一个映射函数Sigmoid,将线性模型得到的连续结果映射到离散型上.它常用于二分类问题,在多分类问题的推广叫softmax. 本文首先阐述Logistic回归的定义,然后介绍一些最优化算法,其中包括基本的梯度上升法和一个改进的随机梯度上升法,这些最优化算法将用于分类器的训…
虽然叫做“回归”,但是这个算法是用来解决分类问题的.回归与分类的区别在于:回归所预测的目标量的取值是连续的(例如房屋的价格):而分类所预测的目标变量的取值是离散的(例如判断邮件是否为垃圾邮件).当然,为了便于理解,我们从二值分类(binary classification)开始,在这类分类问题中,y只能取0或1.更好的理解问题,先举个小例子:假如我们要制作一个垃圾邮件过滤系统,如果一封邮件是垃圾系统,y=1,否则y=0 .给定训练样本集,当然它们的特征和label都已知,我们就是要训练一个分类器…
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻辑回归,无奈啊...虽然这个算法中有回归二字,但它做的事情却并不是回归,而是分类.这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法.因此,logistic回归瞬间也变得高大上起来. 本文用…
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi…
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 到 1 之间(不包括 0 和 1)的概率值,而不是确切地预测结果是 0 还是 1. 1- 计算概率 许多问题需要将概率估算值作为输出.逻辑回归是一种极其高效的概率计算机制,返回的是概率(输出值始终落在 0 和 1 之间).可以通过如下两种方式使用返回的概率: “按原样”:“原样”使用返回的概率(例如…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) ML Lecture 4:Classification:Probabilistic Generative Model 在这堂课中,老师主要根据宝可梦各属性值预测其类型为例说明分类问题,其训练数据为若干宝可梦的各属性值及其类型…
注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模…