数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit][Status][Discuss] Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地…
快速幂+枚举质因数+欧拉定理+lucas定理+CRT. 注意两点: 1.if (n<m) C(n,m)=0. 2.这里0^0时应该return 0. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define mod 999911659 #define mod2 999911658 #define maxn…
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern…
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数) 由于p较大,不可以打表,直接Lucas求解 #include<iostream> using namespace std; typedef long long…
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 For non-negative integers m and n and a prime p, the following congruence relation holds: where and are the base p expansions of m and n respectively.…
>On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and s…
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算法原理 . 看到这个算法之后,就知道这个题是求cd≡m(mod n),要求m,就要先求d,而d则是e的模反元素. 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就叫做a的模反元素. 由模反元素可知,ed≡1(mod Phi[n])(p…
真是到很强的数学题 先利用欧拉定理A^B %p=A^(B%φ(p)+φ(p) ) %p 然后利用卢卡斯定理求出在modφ(p)的几个约数下的解 再利用中国剩余定理合并 计算答案即可 By:大奕哥 #include<bits/stdc++.h> using namespace std; typedef long long ll; ; ll pri[]={,,,}; ll fac[][],inv[][],ans[],n,g; void init(ll p,ll fac[],ll inv[]) {…
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream> #include<cstdio> #include<map> #include<cmath> using namespace std; long long T,K,y,z,p; map<long long,long long>mp; long long…