传送门:Line belt 参考:http://blog.csdn.net/hcbbt/article/details/39375763 题意:在一个平面途中,有一条路ab,还有一条路cd:假设在ab,cd和其他地方的运动速度不同: 求从a到d的最短时间: 思路:三分在ab上的点,在三分cd上的点,找到对应最小的运动时间: #include <iostream> #include <cstring> #include <algorithm> #include <s…
HDU 3400 Line belt (三分再三分) ACM 题目地址:  pid=3400" target="_blank" style="color:rgb(0,136,204); text-decoration:none">HDU 3400 Line belt 题意:  就是给你两条线段AB , CD .一个人在AB以速度p跑,在CD上以q跑,在其它地方跑速度是r.问你从A到D最少的时间. 分析:  先三分AB上的点.再三分CD上的点就可以. …
JLUCPC Dr. Skywind and Dr. Walkoncloud are planning to hold the annual JLU Collegiate Programming Contest. The contest was always held in the college of software in the past. However, they changed their minds and decided to find the most convenient l…
Line belt Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3400 Mean: 给出两条平行的线段AB, CD,然后一个人在线段AB的A点出发,走向D点,其中,人在线段AB上的速度为P, 在线段CD上的速度为Q,在其他地方的速度为R,求人从A点到D点的最短时间. analyse: 经典的三分套三分. 首先在AB线段上三分,确定一个点,然后再在CD上三分,确定第二个点,计算出answer.也就是嵌套的三分搜索. Ti…
从A出发到D,必定有从AB某个点E出发,从某个点F进入CD 故有E,F两个不确定的值. 在AB上行走的时间   f = AE / p 在其他区域行走的时间 g = EF / r 在CD上行走的时间   h = FD / q 总时间 T = f + g + h 当E确定时,T1 = g + h + C   此时g时一个先减后增的凹函数,h是一个单调递减的凹函数,根据凹函数的性质,故T1是一个凹函数 反之亦然,故需要三分确定其中一个点的位置,再三分另一个点的位置. #include<stdio.h>…
// 2019.10.3 // 练习题:2018 ICPC 南京现场赛 D Country Meow 题目大意 给定空间内 N 个点,求某个点到 N 个点的距离最大值的最小值.   思路 非常裸的最小球覆盖问题啊,即找到半径最小的球包含全部的点. 在最小圆覆盖问题上,可以使用随机增量法,这里没有四点确定球心的公式,所以板子失效了. 最小圆覆盖可以用三分套三分,这里空间有三维,假装证明得到在任意一维上都满足凸函数特性,那么再套一层维度三分就OK了.   AC代码 三分套三分套三分写法,复杂度O(n…
1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][Discuss] Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input 输入…
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input 输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐…
点此看题面 大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\)点到\(D\)点所需的最短时间. 什么是最优策略? 很显然,最优策略一定是在\(AB\)传送带上移动到某一个地方,然后步行到\(CD\)传送带的某一个地方,最后直接在\(CD\)传送带上移动到\(D\). 三分套三分 不难发现,这是两个单谷函数,因此,我们可以对在\(AB\)传送带上移动的距离和\(…
题目大意 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 分析 路线是A-线段-X-平面-Y-线段-D 可以发现两边都是单峰函数 证明不会(我连导都不会求) 挖坑 做法 三分AB中一点,再三分CD中一点 姿势 用结构体pt存,写起来就跟正常的浮点数三分一毛一样 solution #include <cst…
题目 给出 $N(1 \leq N \leq 100)$ 个点的坐标 $x_i,y_i,z_i$($-100000 \leq x_i,y_i,z_i \leq 100000$),求包围全部点的最小的球. 2018南京区域赛D题 分析 方法一:模拟退火 模拟退火是 解决最小球覆盖的经典方法,效果也非常好. 随机得到球的中心,如果更小的半径或设定的概率,则转移.(详细解释见链接) //这个代码严格说不是模拟退火 有一个事实:最小球的球心,它不然是一个确定的点,就是距它最远的4个点且等距 于是,我们任…
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,ROutput输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留…
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间. 题解 首先要吐槽一下数据,不..应该是我sadiao了...qwq没有想到有两个点重合在一起就炸掉的情况. 很多人都用了SA过的,但是三分更好写,个人感觉. 非常容易可以得出,我们的答案分成3个部分,在线段ab,平面内和线段cd上. \[ans=…
题意是求出所给各点中最近点对的距离的一半(背景忽略). 用分治的思想,先根据各点的横坐标进行排序,以中间的点为界,分别求出左边点集的最小距离和右边点集的最小距离,然后开始合并,分别求左右点集中各点与中间点的距离,从这些距离与点集中的最小距离比较,求得最小距离,此处可按纵坐标排序,将纵坐标距离已经大于之前最小距离的部分都剪枝. 代码如下: #include <bits/stdc++.h> using namespace std; ]; struct point { double x,y; }p[…
题意:平面上两条线段 AB,CD. A到B的速度v1,C到D的速度v2,其它地方的速度V3. 求A到D的最短时间. 解法:三分嵌套三分.首先假设AB上的点确定后.确定CD的点的确定应该是符合三分性质的,应该是单调或最多凸型分布的. 那么确定AB上的点,也应该不会出现多个峰谷吧. 没有严格证明,是知道有个这个三分嵌套三分的题目才来做的. 代码: /****************************************************** * author:xiefubao ***…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************************************/ /* hdu 畅通工程续 dijkstra求起始点到目标点最短距离 题目大意:求这些村子中从起始位置到目标点的最短距离 解题思路:dijkstra算法,求图中两个点的最短距离, dijkstra算法不同于prim算法,prim算法是求虽小生成树, 不…
吐个糟,尼玛今天被虐成狗了,一题都没搞出来,这题搞了N久居然还是搞不出来,一直TLE,最后还是参考别人代码才领悟的,思路就这么简单, 就是不会转弯,看着模板却不会改,艹,真怀疑自己是不是个笨蛋题意:求n维空间的最远哈曼顿距离.给出n和k,下面n个操作,0表示添加一个k维空间的点,然后给出该点坐标,1 x表示删除第x个操作给出的点 ,对于每个操作都输出最远哈曼顿距离,n<=60000,k<=5.分析:最远曼哈顿距离的模板是直接求D维空间n个点的,复杂度是O(n*2^D),而该题要求每次加一个点就…
题意 就是给你两条线段AB , CD ,一个人在AB以速度p跑,在CD上以q跑, 在其他地方跑速度是r.问你从A到D最少的时间. 三分AB ,然后再三分CD ,模板题目,这题卡精度 eps不能少 #include <cstdio> #include <cstring> #include <queue> #include <cmath> #include <algorithm> #include <set> #include <i…
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input 输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R…
public class MinimumSpacing { //给定平面上的n个点,求距离最近的两个点的距离. //无从下手的话,先分解问题,分解成简单的,逐个分析,然后再合在一起考虑 //这是个2维的数据,那就先降维到1维分析 //先考虑在一条数轴上有n个点,求最近距离的2个点的距离 // // ------*--*------*---*---> //用分治思想处理 // 1.分割 2.处理 3.合并 3个步骤 // // 1.分割: // 将整个数据[先排序]得到数组s,然后将s从中间一份为…
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 输入输出格式 输入格式: 输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R 输出格式: 输出数据为一行,表示lxhgww从…
题目链接 题目大意 给你n(n<=100)个点,要你找一个点使得和所有点距离的最大值最小值ans 题目思路 一直在想二分答案,但是不会check 这个时候就要换一下思想 三分套三分套三分坐标即可 复杂度\(O(n(log_n)^3)\) 代码 #include<set> #include<map> #include<queue> #include<stack> #include<cmath> #include<cstdio> #…
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> #include<math.h> #define eps 1e-9 using namespace std; struct node{ double x,y; }a,b,c,d; double p,q,r; inline node get(node a, node b, double p){ n…
D.求距离 链接:https://www.nowcoder.com/acm/contest/59/D来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32768K,其他语言65536K64bit IO Format: %lld 题目描述 给你一个1 -> n的排列,现在有一次机会可以交换两个数的位置,求交换后最小值和最大值之间的最大距离是多少? 输入描述: 第一行一个数n之后一行n个数表示这个排列 输出描述: 输出一行一个数表示答案 示例1 输入 5 4 5 1 3 2…
2705: 用重载求距离. 时间限制: 1 Sec  内存限制: 128 MB 提交: 208  解决: 114 题目描述 使用函数重载的方法定义两个重名函数,分别求出整型数的两点间距离和浮点型数的两点间距离.只需提交两个函数即可. #include <iostream> #include <cmath> using namespace std; double func(int,int,int,int),func(double,double,double,double); int…
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input 输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐…
[题目描述] 在一个 2 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 AB 和线段 CD.lxhgww 在 AB上的移动速度为 P ,在 CD 上的移动速度为 Q,在平面上的移动速度 R.现在 lxhgww 想从 A 点走到 D 点,他想知道最少需要走多长时间. [题目链接] https://loj.ac/problem/10017 [算法] 猜想两条线段的最优点均满足单峰性质,于是三分套三分,代码借鉴黄学长.(http://hzwer.com/4255.html…
title author date CreateTime categories C# 已知点和向量,求距离的点 lindexi 2019-08-31 16:55:58 +0800 2018-05-08 14:54:30 +0800 C# 已知一个点 P 和向量 v ,求在这个点P按照向量 v 运行距离 d 的点 B . 已经知道了一个点 P 和他运动方向 v ,就可以通过这个求出距离点 P 为 d 的点 B. 首先把 v 规范化,规范化的意识是向量的摸变为1 画一张图来就是把图片灰色向量修改为黑…
#include<cstdio> #include<map> #include<algorithm> using namespace std; ; struct Node { double x,yl,yh; int w; bool operator<(Node t)const { return x<t.x; } }edge[N]; struct { int l,r,cover; }tr[N]; double ys[N]; void build(int u,i…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1203 题意:给你一个点集,求凸包中最小的角:模板题,但是刚开始的时候模板带错了,错的我都想吐了: #include <stdio.h> #include <algorithm> #include <cstring> #include <cmath> using namespace std; #define met(a, b) memset(a,…