Solution -「HNOI2013」消毒】的更多相关文章

弱化一下,先考虑在二维上解决问题. 题目就转化为:有 \(n\) 个点 \((i, j)\) 需要被覆盖,而我们每次可以选一行或一列去覆盖,求覆盖所有点的最少选择次数. 如果我们对于每一个 \((i, j)\),我们把第 \(i\) 行和第 \(j\) 列连边,显然能构成一张二分图. 图中每一条边就是一个需求,而每选择一个点就能解决掉所有与之相连的需求,答案就是解决所有需求最少需要选择的点数.这就是二分图上的最小点覆盖问题. 答案即为最大匹配数. 现在加入三维.因为 \(a, b, c \leq…
「HNOI2013」游走 题目描述 一个无向连通图,顶点从 \(1\) 编号到 \(N\) ,边从 \(1\) 编号到 \(M\) .小 \(Z\) 在该图上进行随机游走,初始时小 \(Z\) 在 \(1\) 号顶点,每一步小 \(Z\) 以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小 \(Z\) 到达 \(N\) 号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这 \(M\) 条边进行编号,使得小 \(Z\) 获得的总分的期望值最小.…
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最难看懂的题目之一了- 首先把题目重新叙述一遍. 题目大致在说,你有一个 P×Q×RP\times Q\times RP×Q×R 的蛋糕,每个点有一个不客观度 v[i][j][k]v[i][j][k]v[i][j][k] ,现在你要把这个蛋糕切开. 切蛋糕的规则是什么呢? 首先我们解释一下: 对于每一…
记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数容纳下就一定至少有,\(\sum \limits _{i = 1 \to k} a_i < n^2\).但这个限制太弱了可恶. 考虑一种构造,一排全放数字,一排隔一个放一个.感觉可以做到最优. 接下来考虑普适化的细节,即需要满足对角线数组不同. 全放数字的就直接往上怼,不够换下一个数字,顺序填即可.…
题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他暗笑,笑自己多情. 「暖」 正恍惚,忽见她闪进门帘. 慢步,靠近,站定,俯身.一抹浅笑挟带着闪闪泪光刻印在时光里. 沉醉于这美好,四周空气开始有了温度,刚刚好的温度. 「坠」 起身,伸出手,他想轻抚过那朝思暮想的面颊. 但他做不到,他发现他在坠落,没有尽头. 深渊是主犯,不断向下延伸,贪婪地吞噬这尘…
\(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点,有点权和边权的树.设当前位置 \(s\)(初始时 \(s=1\)),每次在 \(n\) 个结点内随机选择目标结点 \(t\),付出「\(s\) 到 \(t\) 的简单路径上的边权之和」\(\times\)「\(t\) 的点权」的代价,标记(可以重复标记)点 \(t\) 并把 \(s\) 置为 \(t\).求每个点至少被标记一次时(其中 \(1\) 号结点一开始就被标记)代价之和的期望.答案对…
题目链接 戳我 \(Solution\) 对于这道题,我们首先来看看没有\(D\)这个约束的该如何做. 我们考虑构造最小割模型. 其实直接贪心就好了,选出每条路径上的最小值就好了(路径就是将每层的同一个点连起来) 但是因为这题不仅仅是这样,还有一些约束条件需要满足.所以还是看看如何建模吧. 其实和贪心很像啊. 首先如上面所说连成一条条路径,在将第一层和\(S\)相连,最后一层和\(T\)连接.跑一遍最小割就好了.至于流量,这个自己应该知道吧,如果不知道来看看图,更加深刻的理解.(这里只选了局部图…
\(\mathcal{Description}\)   Link.   给定你初始拥有的钱数 \(C\) 以及 \(N\) 台机器的属性,第 \(i\) 台有属性 \((d_i,p_i,r_i,g_i)\),分别是出售时间.售价.转卖价.单日工作收益.机器在买入或转卖当天不提供收益,且你同一时刻最多拥有一台机器,在 \((D+1)\) 天时必须转卖拥有的机器.求第 \((D+1)\) 天你拥有的最大钱数.\(n\le10^5\). \(\mathcal{Solution}\)   比较自然的想法…
\(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\ope…
\(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+7\) 取模.   \(2\le n\le17\),边集大小 \(0\le m_i\le\frac{n(n-1)}2\). \(\mathcal{Solution}\)   \(n\) 很小,考虑容斥.枚举这 \(n-1\) 个边集的子集,将子集内的边集的边加入图,用矩阵树定理求出生成树个数,容斥一…