ERNIE1-2】的更多相关文章

“最近刚好在用ERNIE写毕业论文” “感觉还挺厉害的” “为什么叫ERNIE啊,这名字有什么深意吗?” “我想让艾尼帮我写作业” 看了上面火热的讨论,你一定很好奇“艾尼”.“ERNIE”到底是个啥? 自然语言处理( Natural Language Processing,简称NLP )被誉为人工智能“皇冠上的明珠”.NLP为各类企业及开发者提供用于文本分析及挖掘的核心工具,已经广泛应用在电商.文化娱乐.金融.物流等行业客户的多项业务中. 而艾尼(ERNIE),可谓是目前NLP领域的最强中文预训…
2019年3月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨.经过短短几个月时间,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型.继1.0后,ERNIE英文任务方面取得全新突破,在共计16个中英文任务上超越了BERT和XLNet, 取得了SOTA效果. 本篇内容可以说是史上最强实操课程,由浅入深完整带大家试跑ERNIE,大家可前往AI Studio fork代码 (https://ais…
随着bert在NLP各种任务上取得骄人的战绩,预训练模型在这不到一年的时间内得到了很大的发展,本系列的文章主要是简单回顾下在bert之后有哪些比较有名的预训练模型,这一期先介绍几个国内开源的预训练模型. 一,ERNIE(清华大学&华为诺亚) 论文:ERNIE: Enhanced Language Representation with Informative Entities GitHub:https://github.com/thunlp/ERNIE 清华大学和华为诺亚方舟实验室联合提出的引入…
引言 我之前参加了一个中文文本智能校对大赛,拿了17名,虽然没什么奖金但好歹也是自己solo拿的第一个比较好的名次吧,期间也学到了一些BERT应用的新视角和新的预训练方法,感觉还挺有趣的,所以在这里记录一下这期间学到的知识,分享一下自己的比赛过程.这个赛题任务大概就是,选择网络文本作为输入,从中检测并纠正错误,实现中文文本校对系统.即给定一段文本,校对系统从中检测出错误字词.错误类型,并进行纠正. 任务定义 系统/模型的输入为原始序列\(X=(x1,x2,..,xn)\),输出为纠错后的序列 \…
[信息抽取]基于ERNIE3.0的多对多信息抽取算法:属性关系抽取 实体关系,实体属性抽取是信息抽取的关键任务:实体关系抽取是指从一段文本中抽取关系三元组,实体属性抽取是指从一段文本中抽取属性三元组:信息抽取一般分以下几种情况一对一,一对多,多对一,多对多的情况: 一对一:"张三男汉族硕士学历"含有一对一的属性三元组(张三,民族,汉族). 一对多:"华扬联众数字技术股份有限公司于2017年8月2日在上海证券交易所上市",含有一对多的属性三元组(华扬联众数字技术股份有…
特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障 0.前言 本项目主要围绕着特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障讲解了文本匹配算法的综述,从经典的传统模型到孪生神经网络"双塔模型"…
NLP知识图谱项目合集(信息抽取.文本分类.图神经网络.性能优化等) 这段时间完成了很多大大小小的小项目,现在做一个整体归纳方便学习和收藏,有利于持续学习. 1. 信息抽取项目合集 1.PaddleNLP之UIE技术科普[一]实例:实体识别.情感分析.智能问答 https://aistudio.baidu.com/aistudio/projectdetail/4180615?contributionType=1 NLP领域任务选择合适预训练模型以及合适的方案[规范建议][ERNIE模型首选] h…