3D模型轻量化】的更多相关文章

一.什么是大场景? 顾名思义,大场景就是能够从一个鸟瞰的角度看到一个大型场景的全貌,比如一个园区.一座城市.一个国家甚至是整个地球.但过去都以图片记录下大场景,如今我们可以通过建造3D模型来还原大场景,其中方式有很多,比如倾斜摄影模型.手工建模模型.BIM模型等都能做出大场景模型. (倾斜摄影) 二.普遍技术难题 在拥有了建造大场景模型的能力后,普遍的难题出现了. 1.模型过大,低则几十GB,高达几个PB,无法顺畅读取,对硬件设备要求过高: 2.既无法通过网页直接展示,也不能进行模型交互,满足不…
"3D模型体量过大.面数过多.传输展示困难",用户面对这样的3D数据,一定不由得皱起眉头.更便捷.快速处理三维数据,是每个3D用户对高效工作的向往. 在老子云最新上线的单模型轻量化服务里,你可以发现,原来还有这种方式能更快速高效地应用三维! 击破三大痛点轻量三维便捷一点 作为极具创新力的三维技术产品,老子云单模型轻量化向我们展示了全新的模型处理方式. 01全自动!3D处理不再低效 如果你从事的是3D可视化项目开发岗位,处理3D模型肯定是让你最头疼的.想快速推进项目进度,可面对数据量庞大…
伴随着互联网的发展,从桌面端走向Web端.移动端必然的趋势.互联网技术的兴起极大地改变了我们的娱乐.生活和生产方式.尤其是HTML5/WebGL技术的发展更是在各个行业内引起颠覆性的变化.随着WebGL标准被广泛接受,出现了许多基于HTML5的开源三维引擎,如threejs.scenejs等.尤其threejs使用非常广泛,一方面由于其使用门槛较低,另一方面是其支持若干种三维文件格式,如stl.obj.3ds.obj.dae.fbx等.对于中小规模的三维模型,使用threejs可以快速搭建一个基…
导言 新的CNN网络的提出,提高了模型的学习能力但同时也带来了学习效率的降低的问题(主要体现在模型的存储问题和模型进行预测的速度问题),这使得模型的轻量化逐渐得到重视.轻量化模型设计主要思想在于设计更高效的"网络计算方式"(尤其针对卷积方式),从而不损失网络性能的前提下,减少网络计算的参数.本文主要介绍其中的一种--MobileNet[1](顾名思义,是能够在移动端使用的网络模型). 深度可分离卷积 MobileNet实现模型轻量化的核心是depth-wise separable co…
原创作者:flowell,转载请标明出处:https://www.cnblogs.com/flowell/p/10839433.html 在IFC标准中,由IfcRepresentationMap支持图元的复用.IfcRepresentationMap包含一个或多个IfcMappedItem,IfcShapeRepresentation可以应用笛卡尔变换算子将自身(ShapeRepresentation)变换到另一个本地坐标系,这个变换算子包含在IfcMappedItem中.IfcMappedI…
抖音3d特效,可谓是越来越火爆了,这个有着迪士尼画风的3D大眼,就刷屏了国内外用户的首页! 有人好奇这些特效究竟是怎么制作的?其实就是把3D模型调整适配到头部模型上,调整位置或者大小就可以制作出一个简单的3D特效. 看起来步骤非常简单,但对模型的要求还是比较严格的.抖音平台明确要求3D特效必须上传三角面结构模型,同时它还要求保持模型尽量小的大小. 而小于10M的要求,大部分的模型几乎都不满足,三角面更是需要大量人工时间进行转换,才能得到满足上传需求的模型格式.所以很多人看到这个要求,就直接放弃了…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet v1遗留下的问题 1)结构问题 MobileNet v1的结构非常简单,是一个直筒结构,这种结构的性价比其实不高,后续一系列的ResNet,DenseNet等结构已经证明通过复用图像特征,使用Concat/Eltw…
0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测大概只能实现一点几倍的加速(按每秒处理的总图片数计算),不管用多少张卡.因为卡越多,数据传输的开销就越大,副作用就越大. 为了提高GPU服务器的资源利用率,尝试了一些加速的手段. 基于Pytorch1.6.0版本实现,官方支持amp功能,不再需要外部apex库: 此外比较重要的库是Dali. 梳理了…