[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0),使q为一个奇数 第二项如果是1,mod 1 为0可以忽略. 则我们求: 2^2^2… mod p =2^k*(2^(2^2…-k) mod q) 因为q是奇数所以与2互质,根据欧拉定理: a^phi(p) mod p=1,(a,p)=1 转化为: 2^k*(2^(2^2…mod phi(p) –…
[题目链接] 点击打开链接 [算法] 通过欧拉拓展定理,列出递推公式 [代码] #include<bits/stdc++.h> using namespace std; typedef long long ll; ll T,N; map<ll,ll> M; template <typename T> inline void read(T &x) { ll f = ; x = ; char c = getchar(); for (; !isdigit(c); c…