MapReduce的理解】的更多相关文章

对MapReduce的理解 客户端启动一个作业 向JobTraker请求一个JobId 将资源文件复制到HDFS上,包括Jar文件,配置文件,输入划分信息等 接收作业后,进入作业队列,根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker来执行(运算移动,数据不移动)分配Reduce任务时,不考虑数据本地化 TaskTracker每隔一段时间向JobTracker发送一个心跳, 告诉JobTracker它仍在运行,同时心跳中还带有很多信息,比如任务进度 Map端…
1 什么是MapReduce? Map本意可以理解为地图,映射(面向对象语言都有Map集合),这里我们可以理解为从现实世界获得或产生映射.Reduce本意是减少的意思,这里我们可以理解为归并前面Map产生的映射. 2 MapReduce的编程模型 按照google的MapReduce论文所说的,MapReduce的编程模型的原理是:利用一个输入key/value对集合来产生一个输出的key/value对集合.MapReduce库的用户用两个函数表达这个计算:Map和Reduce.用户自定义的Ma…
我不喜欢照搬书上的东西,我觉得那样写个blog没多大意义,不如直接把那本书那一页告诉大家,来得省事.我喜欢将我自己的理解.所以我会说说我对于Hadoop对大量数据进行处理的理解.如果有理解不对欢迎批评指责,不胜感激. Hadoop为何有如此能耐? Hadoop之所以能处理大量数据,是因为他提供了一个让大量机器同时处理问题的一个框架,而且高扩展性,可以随时添加机器进来.我曾经和学长讨论过Hadoop和高性能计算机,当时我说这个就像,小白对阵大侠,大侠是高性能计算,小白是普通机器.大侠只有一个,小白…
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
MapReduce太高深,性能也值得考虑,大家感兴趣的还是看看spark比较好. FileInputFormat类 FileInputFormat是所有使用文件为数据源的InputFormat实现的基类,它提供了两个功能:一个定义哪些文件包含在一个作业的输入中:一个为输入文件生成分片的实现,把分片割成记录的作业由其子类来完成. 下图为InputFormat类的层次结构 :  FileInputFormat 类输入路径 FileInputFormat 提供四种静态方法来设定 Job 的输入路径,其…
一个输入分片( in put split)就是能够被单个map 操作 处理的输入块. 每一个map 操作只处理一个输入分片,并且一个一个地处理每条记录,也就是一个键/值对.输入分片和记录都是逻辑上的,并不必要将它们对应到文件(虽然一般情况下都是这样的).在数据库中. 一个输入分片可以是一个表 的若干行,而一条记录就是这若干行中的一行(事实上DBlnputFormat 就是这么 的,它是一种可以从关系数据库获取数据的一种格式). ①JobClient通过指定的输入文件的格式来生成数据分片Input…
网址:http://www.iqiyi.com/w_19rtz04nh9.html…
继续研究hadoop,有童鞋问我,为啥不接着写hive的文章了,原因主要是时间不够,我对hive的研究基本结束,现在主要是hdfs和mapreduce,能写文章的时间也不多,只有周末才有时间写文章,所以最近的文章都是写hdfs和mapreduce.不过hive是建立在hdfs和mapreduce之上,研究好hdfs和mapreduce也是真正用好hive的前提. 今天的内容是mapreduce,经过这么长时间的学习,我对hadoop的相关技术理解更加深入了,这回我会尽全力讲解好mapreduce…
前言:圣诞节来了,我怎么能虚度光阴呢?!依稀记得,那一年,大家互赠贺卡,短短几行字,字字融化在心里:那一年,大家在水果市场,寻找那些最能代表自己心意的苹果香蕉梨,摸着冰冷的水果外皮,内心早已滚烫.这一年……我在博客园-_-#,希望用dt的代码燃烧脑细胞,温暖小心窝. 上篇<Hadoop阅读笔记(一)——强大的MapReduce>主要介绍了MapReduce的在大数据集上处理的优势以及运行机制,通过专利数据编写Demo加深了对于MapReduce中输入输出数据结构的细节理解.有了理论上的指导,仍…
MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce 是基于 Google - MapReduce: Simplified Data Processing on Large Clusters的一种实现.对 MapReduce 的基本介绍如下: MapReduce is a programming model and an associated impl…
目录: 目录见文章1 这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解. Mapreduce初析 Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个输出(output),这个输出就是我们所需要的结果. 我们要学习的就是这个计算模型的运行规则.在运行一个mapreduce计算任务时候,任务过程被分为两个阶段:map阶段和reduce阶段…
一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子项目.实际上,Hadoop中有一个综合性的文件系统抽象,它提供了文件系统实现的各类接口, 而HDFS只是这个抽象文件系统 的一种实现,但HDFS是各种抽象接口中应用最为广泛和最广为人知的一个. HDFS被设计成适合运行在通用和廉价硬件上的分布式文件系统.它和现有的分布式文件系统有很多共同点,但他和其…
最近有在学习MongoDB,看到了关于Map-Reduce,觉得蛮有意思的,所以在这里就记录下来作为学习笔记. 关于Map-Reduce的作用这里就引用一下官网以及另外一篇文章看到的,言简意赅. 1. 官网:http://docs.mongodb.org/manual/tutorial/map-reduce-examples/ The map-reduce operation is composed of many tasks, including: reads from the input c…
MapReduce 使用案例 MapReduce在面试过程中出现的频率还是挺高的,尤其是数据挖掘等岗位.通常面试官会出一个大数据题目,需要被试者根据题目设计基于MapReduce的算法来解答.我在一个大神的博客中找到相关的MapReduce使用案例,下面将链接分享出来.鉴于目前自身对MapReduce的理解不够深刻,暂时不做翻译. 下面是链接 https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/…
大数据第一天 1.Hadoop生态系统 1.1 Hadoop v1.0 架构 MapReduce(用于数据计算) HDFS(用于存储数据) 1.2 Hadoop v2.0 架构 MapReduce(用于数据计算,Hadoop提供计算框架) 其他非Hadoop计算框架 YARN(用户管理和分配集群资源,包括软硬件资源) HDFS(用于存储数据) 1.3 Hive(基于MR的数据仓库) 类似SQL,通常用于离线数据处理(采用MapReduce) 可以理解为HQL->MR的语言翻译器 用途:用于日志.…
1.大纲 Storm工作原理是什么? 流的模式是什么?默认是什么? 对于mapreduce如何理解? Storm的特点和特性是什么? Storm组件有哪些? 2.Storm工作原理是什么? 相对于hadoop而言,strom的优势在于对于应对大数据两的实时数据处理上,因为hadoop在处理大数据过程中高延时的特点使得其面对实时数据缺乏足够的应对策略,目前strom已经被广泛的应用在诸如金融系统,实时推送系统,预警系统,网站统计等多个场景中,他可伸缩性高,不存在数据丢失,高容错性,高健壮性等特点都…
一.前述 Storm由数源泉spout到bolt时,可以选择分组策略,实现对spout发出的数据的分发.对多个并行度的时候有用. 二.具体原理 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同.轮询,平均分配 2. Fields Grouping(相同fields去分发到同一个Bolt)按字段分组,比如,按"user-id"这个字段来分组,那么具有同样"user-id"的…
首先所有知识以官网为准,所有的内容在官网上都有展示,所有的变动与改进,新增内容都以官网为准.hadoop.apache.org Hadoop是一个开源的可拓展的分布式并行处理计算平台,利用服务器集群根据用户的自定义业务逻辑,对海量数据进行分布式处理.Hadoop提供了一个可靠的共享存储和分析系统,Hadoop的核心三大组件有HDFS(分布式文件系统),MapReduce(分布式运算编程框架),YARN(运算资源调度系统).HDFS实现了数据的存储,负责对文件的读写:MapReduce实现了数据的…
Storm主要的应用场景就是流式数据处理,例如实时推荐系统,实时监控系统等. storm中的相关概念 在storm中,分布式的计算结构指的是一个topology(拓扑),一个topology由流式数据,spouts(流生产者),以及bolts(具体操作者)组成.Storm的topologies和其他的批处理任务系统很类似,例如Hadoop,这类批处理任务都定义了清晰的开始和结束点,然而storm的topologies是永不停息的在运行的,除非杀死或者反部署这个topologies. Topolo…
HQL基本语法及应用案例 摘自:<大数据技术体系详解:原理.架构与实践> 一.HQL基本语法 HQL是Hive提供的数据查询语言,由于Hive巨大的影响力,HQL已被越来越多的Hive On Hadoop系统所支持和兼容.HQL语法非常类似于SQL,目前包括以下几类语句: (1)DDL(Data Definition Language,数据定义语言) DDL主要涉及元数据的创建,删除及修改.Hive中元数据包括数据库,数据表,视图,索引,函数,用户角色和权限等,具体包括: 数据库相关的DDL…
WordCount是一个入门的MapReduce程序(从src\examples\org\apache\hadoop\examples粘贴过来的): package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path…
上一篇简单讲了一下HDFS,简单来说就是一个叫做“NameNode”的大哥,带着一群叫做“DataNode”的小弟,完成了一坨坨数据的存储,其中大哥负责保存数据的目录,小弟们负责数据的真正存储,而大哥和小弟其实就是一台台的电脑,他们之间通过交换机,互相联系到了一起. 其实这位大哥和这群小弟不仅能存储数据,还能完成很多计算任务,于是他们有了新的名字,大哥叫做“JobTracker”,而小弟们叫做“TaskTracker”,一起组成了MapReduce.今天就来说说MapReduce是怎么一回事.…
对于MapReduce编程,大概率的流程用过的人或多或少都清楚,但是归结到细节上,就有的地方不清楚了,下面根据自己的疑问,加上从网上各处,找到的被人的描述,最自己的疑问做出回答. 1. MapReduce 和 HDFS有什么关系? 首先,HDFS和MapReduce是Hadoop最核心的设计: 对于HDFS,即Hadoop Distributed File System,它是Hadoop的存储基础,是数据层面的,提供海量的数据存储:而MapReduce,则是一种引擎或者编程模型,可以理解为数据的…
理解MapReduce Hadoop的MapReduce过程具有如下形式:           1) map: (K1, V1) => list(K2, V2)          2) reduce: (K2, list(V2)) => list(K3, V3) 我用一个简单的例子说明它表示的含义: 假设待分析的数据文件是一个用户名和密码的表,即"用户名,密码"格式: ========= input.dat========= zhang,123456 wang,qazxsw…
Google工程师将MapReduce定义为一般的数据处理流程.一直以来不能完全理解MapReduce的真义,为什么MapReduce可以“一般”? 最近在研究Spark,抛开Spark核心的内存计算,这里只关心Spark做了什么.在Spark上的所有工作都是围绕数据集进行,包括创建新的数据集.对数据集的转换.对数据集的归约.对于实际应用中的数据处理流程,Spark的这些似乎足够了,足够形成一套一般的数据处理流程.的确,Spark以数据集为操作对象,而可以不论数据集中数据的类型——很朴素的思想!…
6.2 诊断性能瓶颈 有的时候作业的执行时间会长得惊人.想靠猜也是很难猜对问题在哪.这一章中将介绍如何界定问题,找到根源.涉及的工具中有的是Hadoop自带的,有的是本书提供的. 系统监控和Hadoop任务 在Hadoop的0.20.x版本中,并没有提供MapReduce任务的CPU和内存的性能指标的抽取方法.不过在0.22版本中,CPU和内存性能指标将会被写道作业的历史信息文件中.并且可以通过Hadoop的用户界面来查看这些. 6.2.1 理解MapReduce作业性能的影响因子 从大的方面来…
关于shuffle的过程图. 一:概述shuffle Shuffle是mapreduce的核心,链接map与reduce的中间过程. Mapp负责过滤分发,而reduce则是归并整理,从mapp输出到reduce的输入的这个过程称为shuffle过程. 二:map端的shuffle 1.map结果的输出 map的处理结果首先存放在一个环形的缓冲区. 这个缓冲区的内存是100M,是map存放结果的地方.如果数据量较大,超过了一定的量(默认80M),将会发生溢写过程. 在mapred-site.xm…
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbase调用MapReduce函数使用理解 第三部分:Hbase调用Java API使用理解 第四部分:Hbase Shell操作 第五部分:Hbase建表.读写操作方式性能优化总结   第一部分:Hbase框架原理理解   概述 HBase是一个构建在HDFS上的分布式列存储系统:HBase是基于Goo…
这是我收集的两本关于Hadoop的书,高清PDF版,在此和大家分享: 1.<Hadoop技术内幕:深入理解MapReduce架构设计与实现原理>董西成 著  机械工业出版社2013年5月出版 2.<Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理>蔡斌.陈湘萍 著  机械工业出版社2013年4月出版 百度网盘下载地址: http://pan.baidu.com/s/1sjNmkFj…