tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, keep_dims=False) ⇒ mean, variance: 统计矩,mean 是一阶矩,variance 则是二阶中心矩 tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None…
网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ是方差,γ和β是缩放(scale).偏移(offset)系数. 一般来讲,这些参数都是基于channel来做的,比如输入x是一个16*32*32*128(NWHC格式)的feature map,那么上述参数都是128维的向量.其中γ和β是可有可无的,有的话,就是一个可以学习的参数(参与前向后向),没…
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要使用使用局部响应归一化层,BN本身就是一个归一化网络层 4.可以把训练数据彻底打乱 神经网络训练开始前,都要对输入数据做一个归一化处理,原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(bat…
Batch Nornalization Question? 1.是什么? 2.有什么用? 3.怎么用? paper:<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift> 先来思考一个问题:我们知道在神经网络训练开始前,都要对输入数据做一个归一化处理,那么具体为什么需要归一化呢?归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据…
Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神经网络随着网络深度加深,训练起来越困难,收敛越来越慢?这是个在DL领域很接近本质的好问题.很多论文都是解决这个问题的,比如ReLU激活函数,再比如Residual Network,BN本质上也是解释并从某个不同的角度来解决这个问题的. |“Internal Covariate Shift”问题从论文…
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 """ 大多数情况下,您将能够使用高级功能,但有时您可能想要在较低的级别工作.例如,如果您想要实现一个新特性-一些新的内容,那么TensorFlow还没有包括它的高级实现, 比如LSTM中的批处理规范化--那么您可能需要知道一些事情. 这…
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem). 统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的.也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shi…
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变我们就需要使用更小的learning rate去训练,这一现象被成为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可以选择一…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
原文地址: https://blog.csdn.net/weixin_40759186/article/details/87547795 --------------------------------------------------------------------------------------------------------------- 用pytorch做dropout和BN时需要注意的地方 pytorch做dropout: 就是train的时候使用dropout,训练的时…