阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能力上,能够划分为2类: 单机内存算法实现 基于Hadoop的分步式算法实现 1). 单机内存算法实现   单机内存算法实现:就是在单机下执行的算法,是由cf.taste项目实现的,像我们熟悉的UserCF,ItemCF都支持单机内存执行.而且參数能够灵活配置.单机算法的基本实例.请參考文章:用Mav…
原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahoutrecommendationSlope OneTree ClusterUserCF Comments: 35 Comments Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, M…
Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占…
转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年…
转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相近的用户定义与数量 特点: 1.易于理解 2.用户数较少时计算速度快 GenericItemBasedRecommender 算法: 1.基于item的相似度 特点: 1.item较少时就算速度更快 2.当item的外部概念易于理解和获得是非常有用 SlopeOneRecommender(itemB…
Mahout推荐算法之SlopOne 一.       算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对ItemJ的偏好 图(1) 在真实情况下,该方法有如下几个问题: 1.  为什么要选择UserA计算? 2.  对大量稀疏的情况如何处理,而这种情况是最为普遍的. 图(2) Item1和item2的相似度:((5-3)+(3-4))/2=0.5 Item1和Item3的相似度:(5-2)/1=3 L…
Mahout推荐的ItemBased 一.   算法原理 (一)    基本的 下面的例子,参见图评分矩阵:表现user,归类为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  对用户U做推荐 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVleWVkZWFp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=&q…
Mahout推荐之ItemBased 一.   算法原理 (一)    基本原理 如下图评分矩阵所示:行为user,列为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  对用户U做推荐 公式(一) Map tmp ; Map tmp1 ; for(item a  in userRatedItems){ rate  =userforItemRate(a) ListsimItem =getSimItem(a); For(Jin simItem){ Item b =j;…
阅读导读: 1.Mahout中推荐过滤算法支持哪两种算法? 2.用java代码怎样计算男性用户打分过的图书? 3.itemEuclidean.userEuclideanNoPref各自是什么算法? 1. 项目背景 Amazon是最早的电子商务站点之中的一个.以网上图书起家,最后发展成为音像,电子消费品,游戏.生活用品等的综合性电子商务平台.Amazon的推荐系统,是互联网上最早的商品推荐系统,它为Amazon带来了至少30%的流量.和可观的销售利润. 现在推荐系统已经成为电子商务站点的标配,假设…
转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始…
原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigto…
数据挖掘---推荐算法(Mahout工具) 一.简介 Apache顶级项目(2010.4) Hadoop上的开源机器学习库 可伸缩扩展的 Java库 推荐引擎(协同过滤).聚类和分类 二.机器学习介绍 通常问题都归为这几类问题 分类问题 回归问题 聚类问题 推荐问题 三.安装方法 3.1 下载Mahout wget http://archive.apache.org/dist/mahout/0.9/mahout-distribution-0.9.tar.gz 3.2 解压 tar -zxvf m…
美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标等).如何使用这些已校准的POI数据,挖掘出有价值的信息,本文进行了一些尝试:利用机器学习方法,自动标注缺失品类的POI数据.例如,门店名称为"好再来牛肉拉面馆"的POI将自动标注"小吃"品类. 机器学习解决问题的一般过程:本文将按照:1)特征表示:2)特征选择:3)基…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不仅可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域. 我们首先回顾下特征值和特征向量的定义如下:                                                                     Ax=λx 其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特…
https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考~ 目录 一.基于内容的推荐算法 + TFIDF 二.在推荐系统中的具体实现技巧 正文 一…
http://www.douban.com/note/319219518/?type=like win7基于mahout推荐之用户相似度计算 2013-12-03 09:19:11    事情回到半年前,我想做关于推荐系统的东西,结果看到了强大的apache mahout,然后各种安装linux,hadoop,apache,mahout,taste,结局是,一个星期的努力,失败....linux实在是hold不住啊,最后放弃了,可是最近计算用户相似度,实在是喜欢mahout 的开源,硬着头皮使用…
转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及一些推荐算法知识,在这段时间研究了一遍<推荐算法实践>和<Mahout in action>,在这里主要是根据这两本书的一些思想和自己的一些理解对分布式基于ItemBase的推荐算法进行实现.其中分两部分,第一部分是根据共现矩阵的方式来简单的推算出用户的推荐项,第二部分则是通过传统的相…
一.奇异值分解简介 奇异值分解简称SVD(singular value decomposition),可以理解为:将一个比较复杂的矩阵用更小更简单的三个子矩阵的相乘来表示,这三个小矩阵描述了大矩阵重要的特性.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.数据降维.信号处理与统计等.        任何矩阵都可以使用SVD进行分解,对于一个MxN(M>=N)的矩阵M,存在以下的SVD分解: ∑是一个对角矩阵,其中的元素值就是奇异值,并且按照从大到小的顺序排列.        在很多情…
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等.        这种算法是在NetFlix(没错,就是用大数据捧火<纸牌屋>的那家公司)的推荐算法竞赛中获奖的算法,最早被应用于电影推荐中,在实际应用中比现在排名第一的 @邰原朗所介绍的算法误差(RMSE)会小不少,效率更高.下面仅利用基础的矩阵知识来介绍下这种算法.        该算法的思想是…
       Slope One 算法 是一种基于评分的预测算法, 本质上也是一种基于项目的算法.与一般的基于项目的算法不同, 该算法不计算项目之间的相似度, 而是用一种简单的线性回归模型进行预测(可以扩展) 算法易于实现, 计算速度快, 可扩展性好, 同时对数据稀疏性有较好的适应性.        例如下面表格里有3个用户对4个物品的评分   101 102 103 104 UserX 5 3.5     UserY 2 5 4 2 UserZ 4.5 3.5 1 4 求物品两两之间的差值平均…
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM 原理进行详细阐述,给出其基本算法原理.此外,还将介绍使得隐语义模型声名大噪的算法FunkSVD和在其基础上改进较为成功的BiasSVD.最后,对LFM进行一个较为全面的总结. 1. 矩阵分解应用于推荐算法要解决的问题 在推荐系统中,我们经常可能面临的场景是:现有大量用户和物品,以及少部分用户对少部分…
参考: SparkML之推荐算法(一)ALS --有个比较详细的讲解,包含blocks使用. Spark ALS源码总结 //TODO 源码,集群尝试.研究blocks使用原理及作用. 官方解释:numBlocks is the number of blocks used to parallelize computation (set to -1 to auto-configure). 即bloclk用于并行计算.并行计算量的大小. block设定小值,集群中我们设置spark.default.…
实验目的 初步认识图计算的知识点 复习mapreduce的知识点,复习自定义排序分组的方法 学会设计mapreduce程序解决实际问题 实验原理 QQ好友推荐算法是所有推荐算法中思路最简单的,我们利用的思想就是好友的好友很有可能是自己的好友,而共同好友越多,说明两个人认识的可能性越大.其实这个想法属于图计算的内容,人际关系社交网络是很典型的图计算的内容,大家可以参考相关资料.我们今天就基于共同好友的想法实现. 1.实现思路 我们已有的数据是每个人以及他的好友,我们无法直接从这个数据得到他的好友的…
大家好,我们今天继续来剖析一些推荐广告领域的论文. 今天选择的这篇叫做DeepFM: A Factorization-Machine based Neural Network for CTR Prediction,翻译过来就是DeepFM:一个基于深度神经网络的FM模型.这篇paper的作者来自哈工大和华为,不得不说在人工智能领域的很多论文都是国产的,作为从业者还是非常欣喜能看到这点的. 通过名字我们也能看得出来,今天的这篇paper本质上其实是FM模型的一个进阶或者说是优化版本.如果对FM模型…
原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于用户的协同推荐 矩阵数据 ''' import pandas as pd from io import StringIO import json #数据类型一:csv矩阵(用户-商品)(适用于小数据量) csv_txt = '''"user","Blues Traveler&qu…
推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这些信息往往是用一个二维矩阵描述的.由于用户感兴趣的物品远远小于总物品的数目,这样的模型导致大量的数据空置,即我们得到的二维矩阵往往是一个很大的稀疏矩阵.同时为了减小计算量,我们可以对物品和用户进行聚类, 然后记录和计算一类用户对一类物品的喜好程度,但这样的模型又会在推荐的准确性上有损失. 基于关联规…
大数据时代开始流行推荐算法,所以作者写了一篇教程来介绍apriori推荐算法. 推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这些信息往往是用一个二维矩阵描述的.由于用户感兴趣的物品远远小于总物品的数目,这样的模型导致大量的数据空置,即我们得到的二维矩阵往往是一个很大的稀疏矩阵.同时为了减小计算量,我们可以对物品和用户进行聚类, 然后记录和计算一…
本文内容 用户评分表 曼哈顿(Manhattan)距离 欧式(Euclidean)距离 余弦相似度(cos simliarity) 推荐算法以及数据挖掘算法,计算"距离"是必须的~最近想搭一个推荐系统,看了一些资料和书<写给程序员的数据挖掘指南>,此书不错,推荐大家看看,讲解得很透彻,有理论有代码,还有相关网站.看完后,你立刻就能把推荐算法应用在你的项目中~ 本文先主要说明如何计算物品或用户之间的"距离",陆续会介绍推荐算法本身~ 用户评分表 大体上,推…
本文内容 最近看<写给程序员的数据挖掘指南>,研究推荐算法,书中的测试数据集是 Book-Crossing Dataset 提供的亚马逊用户对书籍评分的真实数据.推荐大家看本书,写得不错,立刻就能对推荐算法上手,甚至应用到你的项目中. Book-Crossing Dataset 提供两种格式的数据集:CVS 格式和 SQL dump,问题是: 如果你有 UE 打开 cvs 文件,有乱码.无论如何转换编码,都不行~因为,这个文件是亚马逊通过程序持久化后,再导出来的.你还会发现,文件中有 html…
上周是淘宝穿衣搭配算法大赛开始评测后的第一周,周冠军是来自浙江大学的"FUC AUTH"队.他们在夺得本周冠军之后,还将自己的获胜经验分享给了大家,究竟有什么秘诀呢? 阿里巴巴天池大数据竞赛在浙大师兄们的口碑中一直很不错,它真正意义上地为我们提供了海量数据源和大数据处理平台,尤其是大数据处理平台是在高校实验室中很难提供.对于以后走向大数据方向的研究人员而言也很具备科研价值,大数据比赛确实也锻炼大数据挖掘算法和程序优化,让我们受益匪浅. 由于我们团队也差不多都是新手,能取得这样的成绩,确…