spark repartition】的更多相关文章

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-partitions.html http://stackoverflow.com/questions/31610971/spark-repartition-vs-coalesce http://dev.sortable.com/spark-repartition/ http://spark.apache.org/docs/latest/progr…
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量调大.还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量. 有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition(). 这两个方法有什么区别,看看源码就知道了: def coalesce(numPartitions: Int, shuffle: Bool…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在SparkSQL中,对数据重新分区主要有两个方法 repartition 和 coalesce ,下面将对两个方法比较 repartition repartition 有三个重载的函数: def repartition(numPartitions: Int): DataFrame  /** * Returns…
窄依赖.宽依赖以及stage的划分依据:https://www.cnblogs.com/itboys/p/6673046.html 参考: http://blog.csdn.net/u012684933/article/details/51028707 参考: http://blog.csdn.net/dax1n/article/details/53431373 参考: http://blog.csdn.net/qq_14950717/article/details/52871666 repar…
一.spark 分区 partition的理解: spark中是以vcore级别调度task的. 如果读取的是hdfs,那么有多少个block,就有多少个partition 举例来说:sparksql 要读表T, 如果表T有1w个小文件,那么就有1w个partition 这时候读取效率会较低.假设设置资源为 --executor-memory 2g --executor-cores 2 --num-executors 5. 步骤是拿出1-10号10个小文件(也就是10个partition) 分别…
1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是父RDD中的一个分区最多只会被子RDD中的一个分区使用,意味着父RDD的一个分区内的数据是不能被分割的,子RDD的任务可以跟父RDD在同一个Executor一起执行,不需要经过Shuffle阶段去重组数据 窄依赖关系划分为两种:一对一依赖(OneToOneDependency)和范围依赖(Range…
repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 PairRDD时,结果却不一样: 不难发现,其实 partitionBy 的结果才是我们所预期的,我们打开 repartition 的源码进行查看: /** * Return a new RDD that has exactly numPartitions partitions. * * Can…
区别: repartition底层调用的是coalesce方法,默认shuffle def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope { coalesce(numPartitions, shuffle = true) } coalesce方法的shuffle参数默认为false,默认不shuffle def coalesce(numPartitions: Int, s…
我们知道 RDD 是分区的,但有时候我们需要重新设置分区数量,增大还是减少需要结合实际场景,还有可以通过设置 RDD 分区数来指定生成的文件的数量 重新分区有两种方法:repartition and coalesce 先看源代码 def repartition(self, numPartitions): """ Return a new RDD that has exactly numPartitions partitions. Can increase or decreas…