不规则ROI的提取】的更多相关文章

在网上看到基于opencv3.0之前的API实现不规则ROI的提取,我自己试了一下发现opencv3.0不行,第一想法是我写的有问题,最后发现是API的改版.原理很简单. 目标:提取黑线作为ROI 原理:先滤波-->>灰度化-->>二值化-->>边缘提取-->>寻找图像轮廓-->>轮廓画在一张空图像-->>水漫填充图像轮廓区域-->>两个图像与操作 灰度化: 二值化: 边缘提取: 空白图像画轮廓: 水漫之后的图像: 与操作…
因为需要,之前写了一个利用mask 得到不规则ROI 区域的程序. 现在需要修改,发现自己都看不懂是怎么做的了.. 所以把它整理下来. 首先利用 鼠标可以得到 你想要的不规则区域的 顶点信息.具体这里不再描述. setMouseCallback("setROIParking_Image", on_MouseHandle, (void*)&SrcImage); 得到不规则区域的顶点之后之后,接下来生成mask. 具体程序如下 void Image::GetROImage() {…
引言 在利用OpenCV对图像进行处理时,通常会遇到一个情况,就是只需要对部分感兴趣区域进行处理.因此,如何选取感兴趣区域呢?(其实就是"抠图"). 在学习opencv的掩码运算后,尝试实现一个类似halcon的reduce_domain功能,对于实现抠图的过程中,需要掌握的要点就是位运算符和copyTo函数 位运算符的相关API: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst); //dst =…
FindContours 在二值图像中寻找轮廓  int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour,  int header_size=sizeof(CvContour), int mode=CV_RETR_LIST,  int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0) ); image  输入的 8-比特.单通道…
任务: 一共要完成两项任务: 1. 在所提供的公路图片上检测出车道线并标记 2. 在所提供的公路视频上检测出车道线并标记 方案: 要检测出当前车道,就是要检测出左右两条车道直线.由于无人车一直保持在当前车道,那么无人车上的相机拍摄视频中,车道线的位置应该基本固定在某一个范围内: 如果我们手动把这部分ROI区域抠出来,就会排除大部分干扰.接下来检测直线肯定用霍夫变换,但ROI区域内的边缘直线信息还是很多,考虑到只有左右两条车道,一条斜率为正.一条斜率为负,可将所有的线分为两组,每组再通过均值或最小…
接opencv6.4-imgproc图像处理模块之直方图与模板 这部分的<opencv_tutorial>上都是直接上代码,没有原理部分的解释的. 十一.轮廓 1.图像中找轮廓 /// 转成灰度并模糊化降噪 cvtColor( src, src_gray, CV_BGR2GRAY ); blur( src_gray, src_gray, Size(3,3) ); Mat canny_output;//找到轮廓的图 vector<vector<Point> > conto…
http://stackoverflow.com/questions/29491669/real-time-paper-sheet-detection-using-opencv-in-android/29492699#29492699 at srcImg; //you may want to apply Canny or some threshold before searching for contours List<MatOfPoint> contours = new ArrayList&…
之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来,网络只要能够分割出大部分背景,那么 loss 的值就可以下降很多,自然无法精细地分割出那些细小的病灶.反过来想,这其实类似于正负样本极不均衡的情况,网络拟合了大部分负样本后,即使正样本拟合得较差,整体的 loss 也已经很低了. 发现这个问题后,我就在想可不可以先用 Faster RCNN 之类的先…
1. R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation 技术路线:selective search + CNN + SVMs Step1:候选框提取(selective search) 训练:给定一张图片,利用seletive search方法从中提取出2000个候选框.由于候选框大小不一,考虑到后续CNN要求输入的图片大小统一,将2000个候选框全部resize到227*…
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作.基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask.Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销.此外,Mask R-CNN可以很容易扩展至其他任务中.如关键点检测.本文在COCO…