1.JobTracker能否决定给当前的TaskTracker节点分配一个Job的具体的哪一个任务? 2.什么是map本地任务? 3.nonRunningMapCache的作用是什么? 4.从TaskTracker节点上分配挂载的本地任务时,如果以前发生过该TaskTracker节点执行某一Map任务失败了的情况,则应将该Map任务该如何处理?   分享到:  QQ好友和群 腾讯微博 QQ空间 收藏 转播 分享 淘帖 支持 反对 欢迎加入about云群371358502.39327136,云计算…
在上一篇博客:hadoop入门级总结一:HDFS中,简单的介绍了hadoop分布式文件系统HDFS的整体框架及文件写入读出机制.接下来,简要的总结一下hadoop的另外一大关键技术之一分布式计算框架:Map/Reduce. 一.Map/Reduce是什么: Map/Reduce是在2004年谷歌的一篇论文中提出大数据并行编程框架,由两个基本的步骤Map(映射)和Reduce(化简)组成,Map/Reduce由此得名.同时,由于它隐藏了分布式计算中并行化.容错.数据分布.负载均衡等内部细节,实际的…
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体来说,存在一个抽象类:TaskScheduler,主要负责分配任务,继承该类的有几个类: CapacityTaskScheduler.FairScheduler.JobQueueTaskScheduler(LimitTasksPerJobTaskScheduler又继承于该类). 从名字大致可以看出…
前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行? Map/Reduce 任务执行总流程 经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为: 代码编写  -->  作业配置  -->  作业提交  -->  Map任务的分配和执行  -->  处理中间结果(Shuffle)  --&…
前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行? Map/Reduce 任务执行总流程 经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为: 代码编写  -->  作业配置  -->  作业提交  -->  Map任务的分配和执行  -->  处理中间结果(Shuffle)  --&…
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe…
  对于Hadoop来说,是通过在DataNode中启动Map/Reduce java进程的方式来实现分布式计算处理的,那么就从源码层简要分析一下hadoop中启动Map/Reduce任务的过程.   首先,对于Map/Reduce端启动的任务,都是通过一些参数来控制java opts的,mapreduce.map.java.opts,mapreduce.reduce.java.opts,这些参数都在MRJobConfig类中,拿map.java.opts举例来说,org.apache.hado…
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re…
转自:http://www.blogjava.net/vagasnail/articles/301140.html?opt=admin 介绍下Python 中 map,reduce,和filter 内置函数的方法: 一:map map(...) map(function, sequence[, sequence, ...]) -> list 说明: 对sequence中的item依次执行function(item),执行结果输出为list. 例子: >>> map(str, ran…
文档内容: 1:下载<hadoop权威指南>中的气象数据 2:对下载的气象数据归档整理并读取数据 3:对气象数据进行map reduce进行处理 关键词:<Hadoop权威指南>气象数据 map reduce python matplotlib可视化 一:下载<hadoop权威指南>一书中的气象数据 <hadoop权威指南>一书中的气象数据位于 http://ftp3.ncdc.noaa.gov/pub/data/noaa/, 新建 getdata.py文件…
运行map reduce任务报错: (null) entry in command string: null chmod 0700 解决办法: 在https://download.csdn.net/download/xiaoliu123586/10551225 中下载winutils.exe,libwinutils.lib 拷贝到%HADOOP_HOME%\bin目录 . 再次执行程序,报错: Exception in thread "main" java.lang.Unsatisfi…
Hive支持自定义map与reduce script.接下来我用一个简单的wordcount例子加以说明. 如果自己使用Java开发,需要处理System.in,System,out以及key/value的各种逻辑,比较麻烦.有人开发了一个小框架,可以让我们使用与Hadoop中map与reduce相似的写法,只关注map与reduce即可.如今此框架已经集成在Hive中,就是$HIVE_HOME/lib/hive-contrib-2.3.0.jar,hive版本不同,对应的contrib名字可能…
Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数联合使用,我们首先介绍下lambda函数. 1.lambda函数 lambda函数的Python3.x API文档 lambdaAn anonymous inline function consisting of a single expression which is evaluated when…
  最近在项目中开展重构活动,对Map端内存尽量要省一些,当前的系统中Map端内存最高占用大概3G左右(设置成2G时会导致Java Heap OOM).虽然个人觉得占用不算多,但是显然这样的结果想要试图去说服一些对内存占用非常挑剔的C++程序员们理由还是不够,于是便通过一定的方式对内存的占用进行了分析,刨根问底.   关于运行时内存占用可以参考文章:http://brandnewuser.iteye.com/blog/2113828, 这里采用的是简单的方式,通过反射将内存MemoryCount…
MapReduce是一种函数式编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性.它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上. Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组. 然而在python中,ma…
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map.tasks inSize = max {mapred.min.split.size, minSplitSize} splitSize = max (minSize, min(goalSize, dfs.block.size)) 一个task的reduce数量,由partition决定. 在输入源是数…
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析. public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on…
二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很大程度上,是为各种分布式计算需求所服务的.我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分布式计算上,我们可以将其视为增 加了分布式支持的计算函数.从计算的角度上看,Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的输出文件. 而从分布式的角度…
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…
二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程度上,是为各种分布式计算需求所服务的.我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分布式计算上,我们可以将其视为增加了分布式支持的计算函数. 从计算的角度上看,Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的输出文件.而从分布式的角度上看,…
背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, 具体阐述下生成测试数据集的Map/Reduce程序该如何写? 场景构造: 假设某移动电信行业的某具体业务, 其记录了通话信息(包括拨打方/接听方/通话时间点/基站 等要素). 产商是不可能提供真实的用户数据用于测试的, 但提供了基本的数据格式. 具体针对该业务场景, 我们简单规划如下: num1 v…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射,函数将使用该映射对一系列键值对进行处理,直接产生出一系列键值对. Map Reduce和流处理 Hadoop的Map / Reduce模型在并行处理大量数据方面非常出色.它提供了一个通用的分区机制(基于数据的关键)来分配不同机器上的聚合式工作负载.基本上, map / reduce的算法设计都是关…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
问题描述 我们的数据分析平台是单一的Map/Reduce过程,由于半年来不断地增加需求,导致了问题已经不是那么地简单,特别是在Reduce阶段,一些大对象会常驻内存.因此越来越顶不住压力了,当前内存问题已经是最大的问题,每个Map占用5G,每个Reduce占用9G!直接导致当数据分析平台运行时,集群处于资源匮乏状态. 因此,在不改变业务数据计算的条件下,将单一的Map/Reduce过程分解成2个阶段.这个时候,需求就相对来说比较复杂,将第一阶段的Reduce结果输出至HDFS,作为第二阶段的输入…
Shuffle的本意是洗牌.混乱的意思,类似于java中的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.MapReduce中的Shuffle过程.所谓Shuffle过程可以大致的理解成:怎样把map task的输出结果有效地传送到reduce输入端.也可以这样理解, Shuffle描述着数据从map task输出到reduce task输入的这段过程.  上图表示的是Shuffle的整个过程.在Hadoop这样的集群环境中,大部分map task…
Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解Mapper和Reducer接口,应用通常须要提供map和reduce方法以实现他们. 接着我们须要对JobConf, JobClient,Partitioner,OutputCollector,Reporter,InputFormat,OutputFormat,OutputCommitter等进行讨…
优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴 1. 设计基础 1.1 两阶段: 单点与聚合 在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合 在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段计算完成后,来…
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴 1. 设计基础 1.1 两阶段: 单点与聚合 在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合 在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段…
这几天学习了MapReduce,我参照资料,自己又画了两张MapReduce的架构图. 这里我根据架构图以及对应的源码,来解释一次分布式MapReduce的计算到底是怎么工作的. ​话不多说,开始! 首先,结合我画的架构图来进行解释. 上图是MapReduce的基本运行逻辑.把图从中间切分,左边为Map任务,右边为Reduce任务.Map的输出是Reduce的输入.因此Map执行完毕Reduce才能执行,两者的执行顺序是一个线性关系,即输入输出的关系为:HDFS->Map->Reduce-&g…
前提 Stream是JDK1.8中首次引入的,距今已经过去了接近8年时间(JDK1.8正式版是2013年底发布的).Stream的引入一方面极大地简化了某些开发场景,另一方面也可能降低了编码的可读性(确实有不少人说到Stream会降低代码的可读性,但是在笔者看来,熟练使用之后反而觉得代码的可读性提高了).这篇文章会花巨量篇幅,详细分析Stream的底层实现原理,参考的源码是JDK11的源码,其他版本JDK可能不适用于本文中的源码展示和相关例子. 这篇文章花费了极多时间和精力梳理和编写,希望能够帮…