GRU and LSTM】的更多相关文章

yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK TUTORIAL, PART 4 – IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO . 本文的代码github地址 在此 .这是循环神经网络教程的第四部分,也是最后一个部分.之前的博文在此, RNN概述 利用Python,Theano实现RNN…
1. Embedding的使用 pytorch中实现了Embedding,下面是关于Embedding的使用. torch.nn包下的Embedding,作为训练的一层,随模型训练得到适合的词向量. 建立词向量层 embed = torch.nn.Embedding(n_vocabulary,embedding_size) 找到对应的词向量放进网络:词向量的输入应该是什么样子 实际上,上面通过随机初始化建立了词向量层后,建立了一个"二维表",存储了词典中每个词的词向量.每个mini-b…
2019-08-29 17:17:15 问题描述:比较RNN,GRU,LSTM. 问题求解: 循环神经网络 RNN 传统的RNN是维护了一个隐变量 ht 用来保存序列信息,ht 基于 xt 和 ht-1 来计算 ht . ht = g( Wi xt + Ui ht-1 + bi ) yt = g( Wo ht + bo ) 门控循环神经网络 GRU 门控循环神经网络(Gated Recurrent Unit,GRU)中引入了门控机制. Update:Γu = g( Wu xt + Uu ht-1…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/239 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
门控循环单元(GRU) 循环神经网络中的梯度计算方法.当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题.通常由于这个原因,循环神经网络在实际中较难捕捉时间序列中时间步距离较大的依赖关系. 门控循环神经网络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较大的依赖关系.它通过可以学习的门来控制信息的流动.其中,门控循环单元(gated recurrent un…
门控循环单元(GRU): 背景: 当时间步数较大或者时间步数较小的时候,循环神经网络的梯度较容易出现衰减或者爆炸.虽然裁剪梯度可以应对梯度爆炸, 但是无法解决梯度衰减的问题.正因为如此,循环神经网络在实际中难以捕捉时间序列中的时间步较大的依赖的关系.门控循环 神经网络的提出,真是为了更好地捕捉时间序列中时间步较大的依赖关系.它通过可以学习的门来控制信息的流动. 重置门和更新门:(修改了循环神经网络中隐藏状态的计算方式) 门控循环单元中的重置门和更新门的输入均为当前时间步输入 Xt 与上一时间步的…
比较: https://www.jianshu.com/p/3774d46b665e https://blog.csdn.net/sinat_33741547/article/details/82821782 https://www.cnblogs.com/jins-note/p/9715610.html 双向GRU: https://blog.csdn.net/dcrmg/article/details/79306402…
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统.文本分类等. 但由于梯度爆炸或梯度消失,RNN存在长期依赖问题,难以建立长距离的依赖关系,于是引入了门控机制来控制信息的累积速度,包括有选择地加入新信息,并有选择地遗忘之前积累的信息.比较经典的基于门控的RNN有LSTM(长短期记忆网络)和GRU(门控循环单元网络). 有关RNN,LSTM和GRU…
看了一些LSTM的博客,都推荐看colah写的博客<Understanding LSTM Networks> 来学习LSTM,我也找来看了,写得还是比较好懂的,它把LSTM的工作流程从输入到输出整个撸了一遍,清晰地展示了整个流程,不足之处就是那个语言模型的例子不知道到底在表达什么. But! 我觉得邱锡鹏老师的书写得更好!我又要开始推荐这本免费的书了:<神经网络与深度学习>.这本书第六章循环神经网络的LSTM部分,阐述了为什么要引入门控机制.LSTM的工作流程.LSTM的数学表达式…
本节主要介绍在TensorFlow中实现LSTM以及GRU网络. 一 LSTM网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息.LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广.在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用. LSTM 通过刻意的设计来避免长期依赖问题.记住长期的信息在实践中是 LSTM 的默认行为,而…