题目描述:这里 从这里开始,我们涉及到了一个新的问题:最小割问题 首先给出一些定义(本人根据定义自己口胡的): 一个流网络中的一个割是一个边集,使得割掉这些边集后源点与汇点不连通 而最小割问题就是一个使得边集中各边容量之和最小的割 根据ford-fulkerson定理,最小割等于最大流! 基于上面的定义,我们可以来讨论这道题了: 首先,根据套路,棋盘经过黑白染色之后可以形成一个二分图,我们由源点向黑点连边,白点向汇点连边,然后由黑点向白点连边,权值为1(所有不能用的点不做考虑) 然后跑一遍最小割…
746. [网络流24题] 骑士共存 ★★☆   输入文件:knight.in   输出文件:knight.out   简单对比时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务: 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑 士,使得它们彼此互不攻击. «数据输入: 由文件knight.in给出输入数据.第一行…
[网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务: 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑 士,使得它们彼此互不攻击. «数据输入: 由文件knight.in给出输入数据.第一行有2 个正整数n 和m…
骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击.«数据输入:由文件knight.in给出输入数据.第一行有2 个正整数n 和m (1<=n<=200, 0<=m<=n*n)<n2),< span="">分别表示棋盘的大小和障碍数.接下来的…
骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击.«数据输入:由文件knight.in给出输入数据.第一行有2 个正整数n 和m (1<=n<=200, 0<=m<=n*n)<n2),< span="">分别表示棋盘的大小和障碍数.接下来的…
题目描述 在一个 n*n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击. 输入格式 第一行有 2 个正整数 n 和 m(1<=n<=200,0<=m<n2) (1<=n<=200, 0<=m<n^2)(1<=n<=200,0<=m<n​2​​),分别表示棋盘的大小和障碍数…
Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算) Description T 公司发现其研制的一个软件中有 n 个错误,随即为该软件发放了一批共 m 个补丁程序.每一个补丁程序都有其特定的适用环境,某个补丁只有在软件中包含某些错误而同时又不包含另一些错误时才可以使用.一个补丁在排除某些错误的同时,往往会加入另一些错误.换句话说,对于每一个补丁 i,都有 2 个与之相应的错误集合 B1[i]和 B2[i],使得仅当软件包含 B1[i]…
Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流) Description 问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法. 编程任务: 对于给定的组卷要求,计算满足要求的组卷方案. Input 第1行有2个正整数k和n (2 <=k<= 20, k<=n<= 1000) k 表示题库中试…
题目描述:这里 这道题是网络流问题中第一个难点,也是一个很重要的问题 如果直接建图感觉无从下手,因为如果不知道放几个球我就无法得知该如何建图(这是很显然的,比如我知道 $1+48=49=7^2$ ,可是我都不知道是否能放到第48个球,那我怎么知道如何建边呢?) 所以这时就体现出了一个很重要的想法:枚举答案!!! 我们知道,正常有二分答案的做法,可以二分一个答案然后检验 这里用类似的想法,但由于答案比较小而且建图更方便,所以我们直接从小往大枚举答案即可 之所以建图更方便,是因为如果我们从小向大枚举…
题目描述看:这里 这是我们遇到的第一个要求输出方案的问题 考虑建图然后用最大流思想: 首先由源点向每一道试题连边,容量为1 然后由每一种试题类型向汇点连边,容量为需求量 最后由每一道试题向可能属于的试题类型连边,容量为1 然后跑最大流,如果流量等于总需求量的话即证明合法(每一条到汇点的边流量都跑满才能使流量等于总需求量,这时一定是合法的) 接下来考虑在合法时如何输出方案 根据网络流的特征,我们可以发现如果某一道试题被归入了某一个类型,那么这道试题到这个类型的边就会跑上1的流量 而如果正向边跑上了…